
THEORY OF COMPUTING, Volume 8 (2012), pp. 209–229
www.theoryofcomputing.org

SPECIAL ISSUE IN HONOR OF RAJEEV MOTWANI

Improved Bounds for Speed Scaling
in Devices Obeying the Cube-Root Rule

Nikhil Bansal∗ Ho-Leung Chan Dmitriy Katz Kirk Pruhs†

Received: July 31, 2010; published: May 25, 2012.

Abstract: Speed scaling is a power management technology that involves dynamically
changing the speed of a processor. This technology gives rise to dual-objective scheduling
problems, where the operating system both wants to conserve energy and optimize some
Quality of Service (QoS) measure of the resulting schedule. In the most investigated speed
scaling problem in the literature, the QoS constraint is deadline feasibility, and the objective
is to minimize the energy used. The standard assumption is that the processor power is of
the form sα where s is the processor speed, and α > 1 is some constant; α ≈ 3 for CMOS
based processors.

In this paper we introduce and analyze a natural class of speed scaling algorithms that we
call qOA. The algorithm qOA sets the speed of the processor to be q times the speed that the
optimal offline algorithm would run the jobs in the current state. When α = 3, we show that
qOA is 6.7-competitive, improving upon the previous best guarantee of 27 achieved by the
algorithm Optimal Available (OA). We also give almost matching upper and lower bounds
for qOA for general α . Finally, we give the first non-trivial lower bound, namely eα−1/α ,
on the competitive ratio of a general deterministic online algorithm for this problem.

ACM Classification: F.2.2

AMS Classification: 68Q25

Key words and phrases: scheduling, energy minimization, speed-scaling, online algorithms

∗Part of this work was done while the author was at the IBM T. J. Watson Research Center.
†Supported in part by NSF grants CNS-0325353, CCF-0514058, IIS-0534531, and CCF-0830558, and an IBM Faculty

Award.

2012 Nikhil Bansal, Ho-Leung Chan, Dmitriy Katz, and Kirk Pruhs
Licensed under a Creative Commons Attribution License DOI: 10.4086/toc.2012.v008a009

http://dx.doi.org/10.4086/toc
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2012.v008a009

NIKHIL BANSAL, HO-LEUNG CHAN, DMITRIY KATZ, AND KIRK PRUHS

1 Introduction

Current processors produced by Intel and AMD allow the speed of the processor to be changed dynami-
cally. Intel’s SpeedStep and AMD’s PowerNOW technologies allow the operating system to dynamically
change the speed of such a processor to conserve energy. In this setting, the operating system must
not only have a job selection policy to determine which job to run, but also a speed scaling policy to
determine the speed at which the job will be run. Almost all theoretical studies we know of assume
a processor power function of the form P(s) = sα , where s is the speed and α > 1 is some constant.
Energy consumption is power integrated over time. The operating system is faced with a dual objective
optimization problem as it both wants to conserve energy, and optimize some Quality of Service (QoS)
measure of the resulting schedule.

The first theoretical study of speed scaling algorithms was in the seminal paper [16] by Yao, Demers,
and Shenker. In the problem introduced in [16] the QoS objective was deadline feasibility, and the
objective was to minimize the energy used. To date, this is the most investigated speed scaling problem in
the literature [2, 6, 3, 9, 11, 12, 14, 16, 17]. In this problem, each job i has a release time ri when it arrives
in the system, a work requirement wi, and a deadline di by which the job must be finished. The deadlines
might come from the application, or might arise from the system imposing a worst-case quality-of-service
metric, such as maximum response time or maximum slow-down. Since the speed can be made arbitrarily
high, every job can always be completed by its deadline, and hence without loss of generality the job
selection policy can be assumed to be Earliest Deadline First (EDF), as it produces a deadline feasible
schedule whenever one exists. Thus the (only) issue here is to determine the processor speed at each time,
i. e., find an online speed scaling policy, to minimize energy.

1.1 The story to date

In their seminal work, Yao, Demers, and Shenker [16] showed that the optimal offline schedule can be
efficiently computed by a greedy algorithm YDS. They also proposed two natural online speed scaling
algorithms, Average Rate (AVR) and Optimal Available (OA). Conceptually, AVR is oblivious in that it
runs each job in the way that would be optimal if there were no other jobs in the system. That is, AVR
processes each job i at the constant speed wi/(di− ri) throughout interval [ri,di], and the speed of the
processor is just the sum of the processing speeds of the jobs. The algorithm OA maintains the invariant
that the speed at each time is optimal given the current state, and under the assumption that no more jobs
will arrive in the future. In particular, let w(x) denote the amount of unfinished work that has deadline
within x time units from the current time. Then the current speed of OA is maxx w(x)/x, this is precisely
the speed that the offline optimum algorithm [16] would set in this state. Another online algorithm BKP
is proposed in [6]. BKP runs at speed e · v(t) at time t, where

v(t) = max
t ′>t

w(t,e t− (e−1)t ′, t ′)
e(t ′− t)

and w(t, t1, t2) is the amount of work that has release time at least t1, deadline at most t2, and that has
already arrived by time t. Clearly, if w(t1, t2) is the total work of jobs that are released after t1 and have
deadline before t2, then any algorithm must have an average speed of at least w(t1, t2)/(t2− t1) during

THEORY OF COMPUTING, Volume 8 (2012), pp. 209–229 210

http://dx.doi.org/10.4086/toc

IMPROVED BOUNDS FOR SPEED SCALING IN DEVICES OBEYING THE CUBE-ROOT RULE

[t1, t2]. Thus BKP can be viewed as computing a lower bound on the average speed in an online manner
and running at e times that speed.

Previous Results
Algorithm General α α = 2 α = 3

Upper Lower Upper Lower Upper Lower
General (4/3)α /2 1.1 1.2

AVR 2α−1αα (2−δ)α−1αα 8 4 108 48.2
OA αα αα 4 4 27 27

BKP 2(α/(α−1))αeα 59.1 135.6

Our Contributions
Algorithm General α α = 2 α = 3

Upper Lower Upper Lower Upper Lower
General eα−1/α 1.3 2.4

qOA 4α/(2e1/2α1/4) (4α/(4α))(1−2/α)α/2 2.4 6.7

Table 1: Results on the competitive ratio for energy minimization with deadline feasibility.

Table 1 summarizes the results in the literature related to the competitive ratio of online algorithms
for this problem. The competitive ratio of AVR is at most 2α−1αα . This was first shown in [16], and a
simpler potential function based analysis was given in [3]. This result is almost tight. In particular, the
competitive ratio of AVR is least (2−δ)α−1αα , where δ is a function of α that approaches zero as α

approaches infinity [3]. The competitive ratio of OA is exactly αα [6], where the upper bound is proved
using an amortized local competitiveness argument. Thus the competitive ratio of AVR is strictly inferior
to that of OA. The competitive ratio of BKP is at most 2(α/(α−1))αeα [6], which is about 2eα+1 for
large α . This bound on the competitive ratio of BKP is better than that of OA only for α ≥ 5. On the
other hand, the known lower bounds for general algorithms are rather weak and are based on instances
consisting of just two jobs. In particular, [5] show a lower bound of (4/3)α /2 for any deterministic
algorithm. If one tries to find the worst 3, 4, . . . job instances, the calculations get messy quickly.

The most interesting value of α is certainly 3 as in current CMOS based processors the dynamic
power is approximately the cube of the speed (this is commonly called the cube-root rule) [8]. It seems
likely that α would be in the range [2,3] for most conceivable devices. The best known guarantee for α

in this range is αα achieved by OA, which evaluates to 4 for α = 2 and 27 for α = 3.

1.2 Our contributions

In Section 3 we introduce and analyze a natural class of speed scaling algorithms, that we call qOA.
The algorithm qOA sets the speed of the processor to be q≥ 1 times the speed that the optimal offline
algorithm would run the jobs in the current state, or equivalently q times the speed that the algorithm OA
would run in the current state. In the worst-case instances for OA the rate that work arrives increases with

THEORY OF COMPUTING, Volume 8 (2012), pp. 209–229 211

http://dx.doi.org/10.4086/toc

NIKHIL BANSAL, HO-LEUNG CHAN, DMITRIY KATZ, AND KIRK PRUHS

time. Intuitively, the mistake that the algorithm OA makes in these instances is that it runs too slowly
initially as it doesn’t anticipate future arrivals. So the motivation of the definition of qOA is to avoid
making the same mistake as OA, and to run faster in anticipation of further work arriving in the future.

We show, using an amortized local competitiveness analysis, that if q is set to 2− 1/α , then the
competitive ratio of qOA is (

2− 1
α

)α (
1+α

−1/(α−1)
)α−1

,

which is at most 4α/(2e1/2α1/4). This bound is approximately 3.38 when α = 2, and 11.52 when α = 3.
Setting q = 2−1/α is not necessarily the optimum value of q for our analysis (although it isn’t too far
off). For general α , it is not clear how to obtain the optimum choice of q for our analysis since this
involves solving a system of high degree algebraic inequalities. For the case of α = 3 and that of α = 2,
we can explicitly determine the the choice of q that gives best bound on the competitive ratios using our
analysis. We show that qOA is at worst 2.4-competitive when α = 2, and at worst 6.7-competitive when
α = 3.

There are two main technical ideas in the competitive analysis of qOA. The first is the introduction
of a new potential function which is quite different from the one used in the analysis of OA in [6] and
the potential function used to analyze AVR in [3]. The second idea is to use a convexity based argument
in the analysis, instead of Young’s inequality. The analysis in [7], and almost all of the amortized local
competitiveness analyses in the speed scaling literature, rely critically on the Young’s inequality. However,
in the current setting, Young’s inequality gives a bound that is too weak to be useful when analyzing
qOA. Instead we observe that certain expressions that arise in the analysis are convex, which allows us to
reduce the analysis of the general case down to just two extreme cases.

In Section 4 we give the first non-trivial lower bound on the competitive ratio for a general determin-
istic algorithm. We show no deterministic algorithm can have a competitive ratio less than eα−1/α . Our
lower bound is almost optimal since BKP achieves a ratio of about 2eα+1, in particular, the base of the
power, e, is the best possible. For α = 3, this raises the best known lower bound a modest amount, from
1.2 to 2.4.

Given the general lower bound of eα−1/α , and that BKP achieves a ratio with a base of the power
e, a natural question is whether there is some choice of the parameter q for which the competitive ratio
of qOA varies with e as the base of the power. Somewhat surprisingly, we show that this is not the case
and the base of the power cannot be improved beyond 4. In particular, in Section 5 we show that the
competitive ratio of qOA can not be better than

4α

4α

(
1− 2

α

)α/2

.

For large α this is about 4α−1/(αe). Note that this lower bound essentially matches our upper bound of

4α

2e1/2α1/4

for qOA.
Our results are summarized in the last two rows of Table 1. In particular we improve the competitive

ratio in the case that the cube-root rule holds from [1.2,27] to [2.4,6.7] and in the case that α = 2 from
[1.1,4] to [1.3,2.4].

THEORY OF COMPUTING, Volume 8 (2012), pp. 209–229 212

http://dx.doi.org/10.4086/toc

IMPROVED BOUNDS FOR SPEED SCALING IN DEVICES OBEYING THE CUBE-ROOT RULE

1.3 Other related results

There are now enough speed scaling papers in the literature that it is not practical to survey all such papers
here. We limit ourselves to those papers most related to the results presented here. Surveys of the speed
scaling literature include [1, 10].

A naive implementation of the offline optimum algorithm for deadline feasibility YDS [16] runs in
time O(n3). Faster implementations for discrete and continuous speeds can be found in [11, 13, 14]. [2]
considered the problem of finding energy-efficient deadline-feasible schedules on multiprocessors. [2]
showed that the offline problem is NP-hard, and gave O(1)-approximation algorithms. [2] also gave
online algorithms that are O(1)-competitive when job deadlines occur in the same order as their release
times. [4] investigated speed scaling for deadline feasibility in devices with a regenerative energy source
such as a solar cell.

2 Formal problem statement

A problem instance consists of n jobs. Job i has a release time ri, a deadline di > ri, and work wi > 0. In
the online version of the problem, the scheduler learns about a job only at its release time; at this time, the
scheduler also learns the work and the deadline of the job. We assume that time is continuous. A schedule
specifies for each time a job to be run and a speed at which to run the job. The speed is the amount of
work performed on the job per unit time. A job with work w run at a constant speed s thus takes w/s
units of time to complete. More generally, the work done on a job during a time period is the integral
over that time period of the speed at which the job is run. A job i is completed by di if work at least wi is
done on it during [ri,di]. A schedule is feasible if every job is completed by its deadline. Note that the
times at which work is performed on job i do not have to be contiguous, that is, preemption is allowed. If
the processor is running at speed s, then the power is P(s) = sα for some constant α > 1. The energy
used during a time period is the integral of the power over that time period. Our objective is to minimize
the total energy subject to completing all jobs by their respective deadlines. An algorithm A is said to be
c-competitive if for any instance, the energy usage by A is at most c times that of the optimal schedule. If
S is a schedule then we use ES to denote the energy used by that schedule. If A is an algorithm, and we
are considering a fixed instance, then we use EA to denote the energy used by the schedule produced by A
on the instance.

3 Upper bound analysis of qOA

Our goal in this section is to prove the following three theorems.

Theorem 3.1. When q = 2−1/α , qOA achieves the competitive ratio(
2− 1

α

)α (
1+α

−1/(α−1)
)α−1

for general α > 1. In particular, this implies that qOA is 4α/(2e1/2α1/4)-competitive.

THEORY OF COMPUTING, Volume 8 (2012), pp. 209–229 213

http://dx.doi.org/10.4086/toc

NIKHIL BANSAL, HO-LEUNG CHAN, DMITRIY KATZ, AND KIRK PRUHS

Theorem 3.2. If q = 1.54, then qOA is 6.73-competitive for α = 3.

Theorem 3.3. If q = 1.46, then qOA is 2.39-competitive for α = 2.

We essentially prove Theorems 3.1, 3.2 and 3.3 in parallel; the proofs differ only at the end. We use
an amortized local competitiveness analysis, and use a potential function Φ. Although our presentation
here should be self-contained, for further background information on amortized local competitiveness
arguments see [15]. In this setting, the units of Φ will be energy, and thus, the derivative of Φ with respect
to time will be power. Intuitively, Φ is a bank/battery of energy that qOA has saved (over some optimum
solution) from the past, that it can use in the future if it lags behind the optimum.

Before defining the potential function Φ, we need to introduce some notations. We always denote the
current time as t0. Since all of our quantities are defined with respect to the current time, we will drop
t0 for notational ease (unless there is cause for confusion). Let sa and so be the current speed of qOA
and the optimal algorithm OPT respectively. For any t0 ≤ t ′ ≤ t ′′, let wa(t ′, t ′′) denote the total amount
of unfinished work for qOA at t0 that has a deadline during (t ′, t ′′]. Define wo(t ′, t ′′) similarly for OPT.
Using this notation, recall that qOA runs at speed

sa = q ·max
t>t0

wa(t0, t)
t− t0

,

where q≥ 1 will be some fixed constant depending on α .
Let d(t ′, t ′′) = max{0,wa(t ′, t ′′)−wo(t ′, t ′′)} denote the excess unfinished work that qOA has relative

to OPT among the already released jobs with deadlines in the range (t ′, t ′′]. We define a sequence of critical
times t0 < t1 < t2 < · · · < th iteratively as follows: Let t1 be the latest time such that d(t0, t1)/(t1− t0)
is maximized. Clearly, t1 is no more than the latest deadline of any job released thus far. If ti is earlier
than the latest deadline, let ti+1 > ti be the latest time, not later than the latest deadline, that maximizes
d(ti, ti+1)/(ti+1− ti).

We will refer to the intervals [ti, ti+1] as critical intervals. We use gi to denote d(ti, ti+1)/(ti+1− ti),
which is the density of the excess work with deadline in (ti, ti+1]. We note that g0,g1, . . . ,gh−1 is a
non-negative strictly decreasing sequence. To see this, suppose for the sake of contradiction that this does
not hold, and let i be smallest index such that gi ≥ gi−1. Then this implies that

d(ti, ti+1)

ti+1− ti
≥ d(ti−1, ti)

ti− ti−1
and hence

d(ti−1, ti+1)

ti+1− ti−1
≥ d(ti−1, ti)

ti− ti−1
,

contradicting the choice of ti in our iterative procedure. Finally, we note that the quantities ti and gi

depend on the current time t0 and might change over time.
We define the potential function Φ as

Φ = β

h−1

∑
i=0

(ti+1− ti) ·gα
i

where β is some constant which we will optimize later.
We first note some simple observations about Φ, ti and gi.

Observation 3.4. Φ is zero before any jobs are released, and after all jobs are completed.

THEORY OF COMPUTING, Volume 8 (2012), pp. 209–229 214

http://dx.doi.org/10.4086/toc

IMPROVED BOUNDS FOR SPEED SCALING IN DEVICES OBEYING THE CUBE-ROOT RULE

Proof. This directly follows as each gi = 0 by definition.

Observation 3.5. Job arrivals do not increase Φ, or change the definition of critical times. Also, job
completions by either qOA or OPT do not change Φ.

Proof. Upon a job arrival, the work of both online and offline increases exactly by the same amount,
and hence the excess work d(t ′, t ′′) does not change for any t ′ and t ′′. For job completions, we note that
d(t ′, t ′′) and Φ are both a continuous function of the unfinished work, and the unfinished work on a job
continuously decreases to 0 as it completes.

The critical times thus only change due to qOA or OPT working on the jobs. However, as we show
next, this does not cause any discontinuous change in Φ.

Observation 3.6. The instantaneous change in critical times does not (abruptly) change the value of Φ.

Proof. There are three ways the critical times can change.

1. Merging of two critical intervals: As qOA follows EDF it must work on jobs with deadline in
[t0, t1], causing g0 to decrease until it becomes equal to g1. At this point, the critical intervals [t0, t1]
and [t1, t2] merge together. Now, Φ does not change by this merger as g0 = g1 at this point.

2. Splitting of a critical interval: As OPT works on some job with deadline t ′ ∈ (tk, tk+1], the quantity

wa(tk, t ′)−wo(tk, t ′)
t ′− tk

may increase faster than
wa(tk, tk+1)−wo(tk, tk+1)

tk+1− tk
causing this interval to split into two critical intervals, [tk, t ′] and [t ′, tk+1]. This split does not change
Φ as the density of the excess work for both of these newly formed intervals is gk.

3. Formation of a new critical time: A job arrives with later deadline than any previous job, and a
new critical time th+1 is created. The potential Φ does not change because gh = 0.

The observations above imply that the potential function does not change due to any discrete events
such as arrivals, job completions, or changes in critical intervals. Then, in order to establish that qOA is
c-competitive with respect to energy, it is sufficient to show the following running condition at all times
when there is no discrete change as discussed above:

sα
a +

dΦ

dt
≤ c · sα

o . (3.1)

The fact that the running condition holds for all times establishes c-competitiveness follows by integrating
the running condition over time, and from the fact that Φ is initially and finally 0, and the fact that Φ does
not increase due to discrete events.

In the next three lemmas, we provide simple bounds on the speed sa of qOA and the speed so for
OPT, which will be useful in this analysis.

THEORY OF COMPUTING, Volume 8 (2012), pp. 209–229 215

http://dx.doi.org/10.4086/toc

NIKHIL BANSAL, HO-LEUNG CHAN, DMITRIY KATZ, AND KIRK PRUHS

Lemma 3.7. Without loss of generality, we may assume that so ≥max
t>t0

wo(t0, t)
t− t0

.

Proof. OPT needs to complete at least wo(t0, t) units of work by time t. As the function sα is convex,
the energy optimal way to accomplish this is to run at a constant speed of wo(t0, t)/(t− t0) during [t0, t].
Since OPT is optimum, it may run only faster (due to possible more jobs arriving in the future).

Lemma 3.8. sa ≥ qg0 .

Proof. By definition of qOA, we have that,

sa = q ·max
t>t0

wa(t0, t)
t− t0

≥ q · wa(t0, t1)
t1− t0

≥ q · d(t0, t1)
t1− t0

= qg0 .

Lemma 3.9. sa ≤ qg0 +qso .

Proof. By the definition of qOA and d(t0, t), we have that,

sa = q ·max
t>t0

wa(t0, t)
t− t0

≤ q ·max
t>t0

wo(t0, t)+d(t0, t)
t− t0

≤ q ·max
t>t0

wo(t0, t)
t− t0

+q ·max
t>t0

d(t0, t)
t− t0

≤ qso +qg0 .

Here the last inequality follows by Lemma 3.7 and the defintion of g0.

We are now ready to prove Theorems 3.1, 3.2 and 3.3. Let us first consider the easy case when
wa(t0, t1)≤ wo(t0, t1).

Case 1: Suppose that wa(t0, t1) ≤ wo(t0, t1). Now by definition, d(t0, t1) = 0 and g0 = 0, and hence
sa ≤ qso by Lemma 3.9. Note that there is only one critical interval [t0, t1] and

dΦ

dt0
=

d
dt0

(β (t1− t0) ·gα
0) = β (t1− t0) ·αgα−1

0
dg0

dt0
−β ·gα

0 = 0 .

Thus to show (3.1) it suffices to show that qα ≤ c, which is easily verified for our choice of q and c in
each of Theorems 3.1, 3.2 and 3.3.

Case 2: Henceforth we assume that wa(t0, t1) > wo(t0, t1). Note that g0 > 0 in this case. As qOA
follows EDF, it must work on some job with deadline at most t1, and hence wa(t0, t1) decreases at rate
sa. For OPT, let sk

o denote the speed with which OPT works on jobs with deadline in the critical interval
(tk, tk+1]. We need to determine dΦ/dt0. To this end, we make the following observation.

Observation 3.10. For k > 0, gk increases at rate at most sk
o/(tk+1− tk). For k = 0, g0 changes at rate

−sa + s0
o

t1− t0
+

g0

t1− t0
.

THEORY OF COMPUTING, Volume 8 (2012), pp. 209–229 216

http://dx.doi.org/10.4086/toc

IMPROVED BOUNDS FOR SPEED SCALING IN DEVICES OBEYING THE CUBE-ROOT RULE

Proof. Let us first consider k > 0. The rate of change tk+1− tk with respect to t0 is 0. Moreover, as qOA
does not work on jobs in wa(tk, tk+1) and wo(tk, tk+1) decreases at rate sk

o, it follows that

d
dt0

gk =
d

dt0

max(0,wa(tk, tk+1)−wo(tk, tk+1))

tk+1− tk
≤ sk

o

tk+1− tk
.

For k = 0, and by our assumption that wa(t0, t1)> wo(t0, t1), we have that

d
dt0

g0 =
d

dt0

wa(t0, t1)−wo(t0, t1)
t1− t0

=
−sa + s0

o

t1− t0
+

wa(t0, t1)−wo(t0, t1)
(t1− t0)2 =

−sa + s0
o

t1− t0
+

g0

t1− t0
.

Now,

dΦ

dt0
= β

(
d

dt0
((t1− t0) ·gα

0)+ ∑
k>0

d
dt0

((tk+1− tk) ·gα
k)

)

= β

(
(t1− t0) ·αgα−1

0
dg0

dt0
−gα

0 + ∑
k>0

α(tk+1− tk)gα−1
k

dgk

dt0

)

≤ β

(
(−sa + s0

o)αgα−1
0 +(α−1)gα

0 + ∑
k>0

αsk
ogα

k −1

)
(3.2)

where the last step follows from the second step using Observation 3.10.
As the gi’s are non-increasing and ∑k≥0 sk

o = so by definition, (3.2) implies that

dΦ

dt
≤ β (αgα−1

0 (−sa + so)+(α−1)gα
0) .

Thus to show the running condition (3.1), it is sufficient to show that

sα
a +β (αgα−1

0 (−sa + so)+(α−1)gα
0)− c · sα

o ≤ 0 . (3.3)

Consider the left hand side of equation (3.3) as a function of sa while g0 and so are fixed. We note
that it is a convex function of sa. Hence, to show (3.3), it is sufficient to show that it holds at the extreme
possible values for sa, which by Lemma 3.8 and Lemma 3.9 are sa = qg0 and sa = qg0 +qso.

For sa = qg0, the left hand side of (3.3) becomes

(qα −βαq+β (α−1))gα
0 +βαgα−1

0 so− csα
o . (3.4)

Taking derivative with respect to so, we see that this is maximized when csα−1
o = βgα−1

0 . Substituting
this value for so and canceling gα

0 on both sides, it follows that it suffices to satisfy:

(qα −βαq+β (α−1))+β (α−1)
(

β

c

)1/(α−1)

≤ 0 . (3.5)

THEORY OF COMPUTING, Volume 8 (2012), pp. 209–229 217

http://dx.doi.org/10.4086/toc

NIKHIL BANSAL, HO-LEUNG CHAN, DMITRIY KATZ, AND KIRK PRUHS

Next, for sa = qg0 +qso, the left hand side of equation (3.3) becomes

qα(g0 + so)
α −β (qα− (α−1))gα

0 −βα(q−1)gα−1
0 so− csα

o . (3.6)

Substituting so = x ·g0 and canceling gα
0 on both sides, it suffices to satisfy

qα(1+ x)α −β (qα− (α−1))−βα(q−1)x− cxα ≤ 0 . (3.7)

We now fork our proofs of Theorems 3.1, 3.2 and 3.3. In each case we need to show that equations
(3.5) and (3.7) hold. We first finish up the proof for Theorem 3.1. Recall that we set q = 2−1/α . We let
β = c = qαηα−1 where η = 1+α−1/(α−1). With these choices of q,β and c, αq = 2α−1. Substituting
in equation (3.5), and dividing through by qα , we obtain that this equation is then equivalent to(

1−η
α−1(2α−1)+η

α−1(α−1)
)
+η

α−1(α−1)≤ 0

which is equivalent to η ≥ 1. Similarly, equation (3.7) is equivalent to

(1+ x)α −αη
α−1−η

α−1(α−1)x−η
α−1xα ≤ 0 .

Since α ≥ 1, it suffices to show that

(1+ x)α −αη
α−1−η

α−1xα ≤ 0 . (3.8)

Taking the derivative with respect to x of the left side of equation (3.8), we can conclude that the maximum
is attained at x such that (1+ x)α−1−ηα−1xα−1 = 0, or equivalently x = 1/(η − 1) = α1/(α−1). For
this value of x, the left side of equation (3.8) evaluates to 0 and hence the result follows. Hence the
running condition (3.3) is satisfied. So the competitive ratio is at most c = qαηα−1 with q = 2−1/α and
η = 1+α−1/(α−1), which implies Theorem 3.1 holds.

To obtain the bound 4α/(2e1/2α1/4), we note that (1−1/x)x ≤ 1/e for x > 1 and hence

qα =

(
2
(

1− 1
2α

))α

≤ 2α/
√

e .

Similarly, as e−x ≤ 1− x+ x2/2≤ 1− x/2 for 0≤ x < 1, and ln(α)≤ (α−1) for α > 1 we have

η = 1+α
−1/(α−1) = 1+ e− lnα/(α−1) ≤ 2− lnα

2(α−1)
= 2

(
1− lnα

4(α−1)

)
.

Thus

η
α−1 = 2α−1

(
1− lnα

4(α−1)

) 4(α−1)
lnα
· lnα

4

≤ 2α−1e−(lnα)/4 = 2α−1/α
1/4

which implies the overall bound.
To finish the proof of Theorem 3.2 we wish to determine the values of q and β so that the inequalities

(3.5) and (3.7) hold with the minimum possible value of c. Plugging α = 3 into inequalities (3.5) and
(3.7) we obtain:

(q3−3βq+2β)+2β

(
β

c

)1/2

≤ 0 , and

q3(1+ x)3−β (3q−2)−3β (q−1)x− cx3 ≤ 0 .

THEORY OF COMPUTING, Volume 8 (2012), pp. 209–229 218

http://dx.doi.org/10.4086/toc

IMPROVED BOUNDS FOR SPEED SCALING IN DEVICES OBEYING THE CUBE-ROOT RULE

We wrote a computer program to approximately determine the values of q and β that minimize c. The
best values we obtained are q = 1.54,β = 7.78 and c = 6.73. It is easy to check that (3.5) is satisfied. The
left hand side of (3.7) becomes −3.08x3 +10.96x2−1.65x−16.73, which can be shown to be negative
by differentiation. A similar process yields Theorem 3.3. We set q = 1.46 and β = 2.7 and check that
(3.5) and (3.7) are satisfied for these values to give c = 2.39.

4 General lower bound

The goal in this section is to prove the following theorem.

Theorem 4.1. No deterministic online algorithm A can have a competitive ratio less than eα−1/α .

We assume α is fixed and is known to the algorithm. We give an adversarial strategy for constructing
a job instance based on the behavior of A. We demonstrate a schedule OPT whose energy usage is
arbitrarily close to a factor of eα−1/α less than the energy used by the schedule produced by A.

Adversarial strategy: Let ε > 0 be some small fixed constant. Work is arriving during [0,h], where
0 < h≤ 1− ε . The rate of work arriving at time t ∈ [0,h] is

a(t) =
1

1− t
.

So the work that arrives during any time interval [u,v] is
∫ v

u a(t)dt. All work has deadline 1. The value
of h will be set by the adversary according to the action of A. Intuitively, if A spends too much energy
initially, then h will be set to be small. If A does not spend enough energy early on, then h will be set to
1− ε . In this case, A will have a lot of work left toward the end and will have to spend too much energy
finishing this work off. To make this more formal, consider the function

E(t) =
∫ t

0

((
1+

b
lnε

) 1
1− x

)α

dx

where b is some constant (which we will later set to 1/(α−1)1/α). This is the total energy usage up to
time t if A runs at speed

s(t) =
(

1+
b

lnε

)
1

1− t
.

Of course, A may run at speed other than s(t). We set h be the first time, satisfying 0 < h < 1− ε , such
that total energy usage of A up to time h is at least E(h). If no such time exists, then h = 1− ε .

We break the lower bounding of the competitive ratio into three cases depending on whether h ∈
(0,1−1/e], h ∈ (1−1/e,1− ε), or h = 1− ε . The proofs of some inequalities are given in lemmas at
the end of the section.

THEORY OF COMPUTING, Volume 8 (2012), pp. 209–229 219

http://dx.doi.org/10.4086/toc

NIKHIL BANSAL, HO-LEUNG CHAN, DMITRIY KATZ, AND KIRK PRUHS

The case that h ∈ (0,1−1/e]: Since h < 1− ε , the energy used by the algorithm EA is at least E(h)
and hence

EA ≥ E(h) =
∫ h

0

((
1+

b
lnε

)
1

1− x

)α

dx

=

(
1+

b
lnε

)α(1
(α−1)(1−h)α−1 −

1
α−1

)
. (4.1)

Now consider the possible schedule OPT that runs at a constant speed so = ln(1/(1−h)) throughout
[0,1]. Since h ≤ 1−1/e, we have so ≤ 1. On the other hand, a(t) ≥ 1 for all t ∈ [0,h]. Hence, during
[0,h], there is always enough released work for OPT to process. Observe that the total processing done
by OPT in [0,1] is ln(1/(1−h)), which equals the total work released, so OPT is feasible.

We can calculate a bound on the energy used by OPT as follows:

EOPT = sα
o =

(
ln

1
1−h

)α

≤ α

eα−1

(
1

(α−1)(1−h)α−1 −
1

α−1

)
where the inequality is proved in Lemma 4.2.

Combining our bounds on EA and EOPT, we can conclude that the competitive ratio in this case is at
least (

1+
b

lnε

)α 1
α

eα−1

which tends to eα−1/α as ε tends to 0.

The case that h ∈ (1− 1/e,1− ε): One possible schedule OPT is to run at speed so(t) = a(t) for
t ∈ [0,1− e(1−h)] and run at a constant speed so(t) = 1/(e(1−h)) for t ∈ [1− e(1−h),1]. Note that
by simple algebra, we have 0 < 1− e(1−h) < h. We observe that so(t) ≤ a(t) for all t ∈ [0,h], hence
there is always enough released work for OPT to process during [0,h]. To establish that OPT is feasible,
we show that the total processing done by OPT equals the total work released, as follows.

∫ 1

0
so(t)dt =

∫ 1−e(1−h)

0
a(t)dt +

∫ 1

1−e(1−h)

1
e(1−h)

dt

=

(
ln

1
e(1−h)

)
+

(
(1− (1− e(1−h)))

e(1−h)

)
= ln

1
1−h

=
∫ h

0
a(t)dt .

THEORY OF COMPUTING, Volume 8 (2012), pp. 209–229 220

http://dx.doi.org/10.4086/toc

IMPROVED BOUNDS FOR SPEED SCALING IN DEVICES OBEYING THE CUBE-ROOT RULE

We now wish to bound the energy used by OPT.

EOPT =
∫ 1

0
(so(t))αdt

=
∫ 1−e(1−h)

0

(
1

1− t

)α

dt +
∫ 1

1−e(1−h)

(
1

e(1−h)

)α

dt

=
1

(α−1)eα−1(1−h)α−1 −
1

α−1
+

(
1

e(1−h)

)α−1

=
α

eα−1
1

(α−1)(1−h)α−1 −
1

α−1
. (4.2)

By the fact that ex ≥ 1+ x for all x≥ 0, we have that eα−1 ≥ α and α/eα−1 ≤ 1. Hence, we can loosen
the above bound to:

EOPT ≤
α

eα−1

(
1

(α−1)(1−h)α−1 −
1

α−1

)
.

The following bound on EA from line (4.1) still holds in this case:

EA ≥
(

1+
b

lnε

)α(1
(α−1)(1−h)α−1 −

1
α−1

)
.

Combining the bounds on EA and EOPT, we again conclude that the competitive ratio is at least(
1+

b
lnε

)α 1
α

eα−1

which tends to eα−1/α as ε tends to 0.

The case that h = 1− ε: Note that the adversary ends the arrival of work at time 1− ε and the total
amount of work arrived is ∫ 1−ε

0

1
1− t

dt =− lnε .

Also note that the total energy usage of A up to 1− ε may be exactly E(1− ε).
We first show that much of the work released is unfinished by A at time 1− ε . To see this let sA(t) be

the speed of the algorithm A at time t and consider the algorithm B that works at speed

sB(t) =
(

1+
b

lnε

)
1

1− t
.

The energy consumed by B by time t ≤ 1+ ε is exactly∫ t

0
sB(x)αdx = E(t) ,

THEORY OF COMPUTING, Volume 8 (2012), pp. 209–229 221

http://dx.doi.org/10.4086/toc

NIKHIL BANSAL, HO-LEUNG CHAN, DMITRIY KATZ, AND KIRK PRUHS

which, by the definition of h, is at least the energy consumed by A by time t. We will prove in Lemma 4.3
that this implies the work processed by A by time 1− ε is at most the work processed by B by time 1− ε .
Hence the maximum amount of work completed by A by time 1− ε is∫ 1−ε

0
sB(t)dt =

∫ 1−ε

0

(
1+

b
lnε

)
1

1− x
dx

= − lnε−b .

Hence, A has at least b units of work remaining at time 1− ε . To complete this amount of work during
[1− ε,1],

EA ≥
∫ 1

1−ε

(sA(t))αdt =
(

b
ε

)α

ε =
1

(α−1)εα−1

where the last equality follows from setting b = 1/(α−1)1/α . Using the bound on EOPT from line (4.2),
with h = 1− ε , we find that there is a feasible schedule using energy at most

α

eα−1
1

(α−1)εα−1 .

Thus, the competitive ratio in this case is at least eα−1/α .
To finish the proof of Theorem 4.1 we need the following two technical lemmas.

Lemma 4.2. For any h ∈ (0,1−1/e],(
ln

1
1−h

)α

≤ α

eα−1

(
1

(α−1)(1−h)α−1 −
1

α−1

)
.

Proof. Let us define

f (h) =
(

ln
1

1−h

)α

− α

eα−1

(
1

(α−1)(1−h)α−1 −
1

α−1

)
.

Differentiating f (h), we have

f ′(h) = α

(
ln

1
1−h

)α−1 1
1−h

− α

eα−1
1

(1−h)α

=
α

1−h

((
ln

1
1−h

)α−1

−
(

1
e(1−h)

)α−1
)

.

We can check easily by differentiation that

ln
1

1−h
≤ 1

e(1−h)

for all h > 0, and the equality holds only at h = 1−1/e. Therefore, f ′(h) is non-positive, and f (h)≤
f (0) = 0. The Lemma then follows.

THEORY OF COMPUTING, Volume 8 (2012), pp. 209–229 222

http://dx.doi.org/10.4086/toc

IMPROVED BOUNDS FOR SPEED SCALING IN DEVICES OBEYING THE CUBE-ROOT RULE

Lemma 4.3. Let sA(t) and sB(t) be non-negative speed functions for two algorithms A and B over a time
interval [0,x]. Assume sB(t) is positive, continuous, differentiable, and monotonically increasing. Then if
A always has used no more energy than B, that is if∫ y

0
(sA(t))αdt ≤

∫ y

0
(sB(t))αdt for all y ∈ [0,x] ,

then A has processed no more work than B by time x, that is∫ x

0
sA(t)dt ≤

∫ x

0
sB(t)dt .

Proof. For any y ∈ [0,x], define

F(y) =
∫ y

0
(sA(t)α − sB(t)α)dt and G(y) = α

∫ y

0
sB(t)α−1(sA(t)− sB(t))dt .

By Bernoulli’s Inequality, (1+ z)α ≥ 1+αz for all α > 1 and z ∈ [−1,∞). Hence,

F(y) =
∫ y

0

(
sB(t)α

(
(1+

sA(t)− sB(t)
sB(t)

)α −1
))

dt

≥ α

∫ y

0
sB(t)α−1(sA(t)− sB(t))dt = G(y) .

Since F(y)≤ 0, it follows that G(y)≤ 0. As sB is monotonically increasing and positive, it follows that
G(y)s′B(y)/sB(y)α ≤ 0 for all y ∈ [0,x]. Hence∫ x

0
G(y)

s′B(y)
sB(y)α

dy≤ 0 .

Applying integration by parts and noting that G′(y) = αsB(y)α−1(sA(y)− sB(y)), we obtain that

0 ≥
∫ x

0
G(y)

s′B(y)
sB(y)α

dy

=

[
G(y)

sB(y)1−α

1−α

]x

0
−
∫ x

0
α

sA(y)− sB(y)
1−α

dy

= −G(x)
sB(x)1−α

α−1
+

α

α−1

∫ x

0
(sA(y)− sB(y))dy .

The last equality follows from G(0) = 0. Since G(x)≤ 0, we obtain the desired result.

5 Lower Bounds for qOA

Our goal in this section is to prove the following theorem.

THEORY OF COMPUTING, Volume 8 (2012), pp. 209–229 223

http://dx.doi.org/10.4086/toc

NIKHIL BANSAL, HO-LEUNG CHAN, DMITRIY KATZ, AND KIRK PRUHS

Theorem 5.1. Let α > 2 be a fixed known constant. For any choice of q, the competitive ratio of qOA is
at least

1
4α

4α

(
1− 2

α

)α/2

.

We show that on the following instance, the energy used by qOA is at least (4α/(4α))(1−2/α)α/2

times optimal.

Instance Definition: Let ε be some constant satisfying ε ∈ (0,1). Consider the input job sequence
where work is arriving during [0,1− ε] and the rate of arrival at time t is

a(t) =
1

(1− t)β
,

where β = 2/α . All work has deadline 1. Finally, a job is released at time 1− ε with work ε1−β and
deadline 1.

We first give an upper bound on the energy used in the optimal energy schedule. Consider the schedule
OPT that runs at speed a(t) during [0,1− ε] and then runs at speed 1/εβ during [1− ε,1]. Clearly OPT
completes all work by deadline 1. The energy usage of OPT, and hence an upper bound on the energy
used by an optimal schedule, is then

EOPT =
∫ 1−ε

0
(a(t))αdt +

(
1

εβ

)α

· ε =
∫ 1−ε

0

1
(1− t)βα

dt +
1

εβα−1

=

[
1

βα−1
1

(1− t)βα−1

]1−ε

0
+

1
εβα−1 =

1
βα−1

1
εβα−1 −

1
βα−1

+
1

εβα−1

≤ βα

βα−1
1

εβα−1 . (5.1)

We want to calculate the energy usage of qOA during [1− ε,1], which is a lower bound to EqOA, as
follows. Let s(t) be the speed of qOA at time t. We first determine s(t) for t ∈ [0,1− ε]. The value of
s(t) is the unique nonnegative solution to

s(t) = q ·

∫ t

0
a(y)dy−

∫ t

0
s(y)dy

1− t
.

One can verify that

s(t) =
q

β +q−1
1

(1− t)β
− q

β +q−1
(1− t)q−1

THEORY OF COMPUTING, Volume 8 (2012), pp. 209–229 224

http://dx.doi.org/10.4086/toc

IMPROVED BOUNDS FOR SPEED SCALING IN DEVICES OBEYING THE CUBE-ROOT RULE

satisfies the above equation by substituting it to the right hand side of the equation, as follows:

q
1− t

(∫ t

0

1
(1− y)β

dy−
∫ t

0

(
q

β +q−1
1

(1− y)β
− q

β +q−1
(1− y)q−1

)
dy
)

=
q

1− t

∫ t

0

(
(1− q

β +q−1
)

1
(1− y)β

+
q

β +q−1
(1− y)q−1

)
dy

=
q

1− t
·
[

1
β +q−1

(1− y)−β+1− 1
β +q−1

(1− y)q
]t

0

=
q

β +q−1
1

(1− t)β
− q

β +q−1
(1− t)q−1 = s(t) .

We then bound the amount of work w that qOA has unfinished right after the last job arrives at time 1− ε

as follows:

w =
∫ 1−ε

0
a(t)dt−

∫ 1−ε

0
s(t)dt + ε

1−β

=
∫ 1−ε

0

((
1− q

β +q−1

)
1

(1− t)β
+

q
β +q−1

(1− t)q−1
)

dt + ε
1−β

=

[
1

β +q−1
(1− t)−β+1− 1

β +q−1
(1− t)q

]1−ε

0
+ ε

1−β

=
β +q

β +q−1
1

εβ−1 −
1

β +q−1
ε

q . (5.2)

The speed s(t), for t ∈ [1− ε,1], is the unique solution to the equation

s(t) = q ·
w−

∫ t

1−ε

s(y)dy

1− t
.

By substitution one can verify that the solution is

s(t) = q
(

ε

1− t

)1−q(w
ε

)
.

We can check that
∫ 1

1−ε
s(t)dt = w, so qOA just finishes all the work at time 1. Hence, the energy usage

of qOA during [1− ε,1] is∫ 1

1−ε

(s(t))αdt = qα
ε
(1−q)α

(w
ε

)α
∫ 1

1−ε

1
(1− t)(1−q)α

dt

=
qα

qα−α +1

(w
ε

)α

ε . (5.3)

As ε approaches 0, we can see from equation (5.2) that w approaches

β +q
β +q−1

1
εβ−1 .

THEORY OF COMPUTING, Volume 8 (2012), pp. 209–229 225

http://dx.doi.org/10.4086/toc

NIKHIL BANSAL, HO-LEUNG CHAN, DMITRIY KATZ, AND KIRK PRUHS

Hence, combining this with equation (5.3), the energy used by qOA at least approaches

qα

qα−α +1

(
β +q

β +q−1

)α 1
εβα−1 .

Combining this with our bound on the optimal energy from equation (5.1), and setting β = 2/α , we can
conclude that the competitive ratio of qOA at least approaches

qα

qα−α +1

(
β +q

β +q−1

)α(
βα−1

βα

)
≥ qα

qα

(
β +q

β +q−1

)α(
βα−1

βα

)
=

1
2α

qα−1

(
1+

1
q+ 2

α
−1

)α

.

We can see by differentiation that the above expression is increasing when q≥ 2. Hence, to obtain a lower
bound for the competitive ratio, we can assume q≤ 2. We rewrite the lower bound for the competitive
ratio as

1
2qα

(
q(q+ 2

α
)

q+ 2
α
−1

)α

(5.4)

and focus on the term
q(q+ 2

α
)

q+ 2
α
−1

.

We differentiate with respect to q and get

(q+ 2
α
−1)(2q+ 2

α
)− (q2 + 2q

α
)

(q+ 2
α
−1)2

.

Setting this equal to 0, we obtain

q2 +

(
4
α
−2
)

q+
(

4
α2 −

2
α

)
= 0 .

The unique positive solution for this equation is

q = 1− 2
α
+

√
1− 2

α
.

Plugging this value of q back into our lower bound for the competitive ratio in line (5.4), we finally
conclude that the competitive ratio of qOA is at least

1
2qα


(

1− 2
α
+
√

1− 2
α

)(
1+
√

1− 2
α

)
√

1− 2
α


α

=
1

2qα

(1+

√
1− 2

α

)2
α

≥ 1
2qα

(
4

√
1− 2

α

)α

=
1

2qα
4α

(
1− 2

α

)α/2

.

(We used the inequality (x+ y)2 ≥ 4xy.) The Theorem follows since q≤ 2.

THEORY OF COMPUTING, Volume 8 (2012), pp. 209–229 226

http://dx.doi.org/10.4086/toc

IMPROVED BOUNDS FOR SPEED SCALING IN DEVICES OBEYING THE CUBE-ROOT RULE

References

[1] SUSANNE ALBERS: Energy-efficient algorithms. Comm. ACM, 53(5):86–96, 2010.
[doi:10.1145/1735223.1735245] 213

[2] SUSANNE ALBERS, FABIAN MÜLLER, AND SWEN SCHMELZER: Speed scaling on parallel
processors. In Proc. 19th Ann. ACM Symp. on Parallel Algorithms and Architectures (SPAA’07), pp.
289–298. ACM Press, 2007. [doi:10.1145/1248377.1248424] 210, 213

[3] NIKHIL BANSAL, DAVID P. BUNDE, HO-LEUNG CHAN, AND KIRK PRUHS: Average rate speed
scaling. In Proc. 8th Latin Amer. Symp. on Theoretical Informatics (LATIN’08), pp. 240–251.
Springer, 2008. [ACM:1792939] 210, 211, 212

[4] NIKHIL BANSAL, HO-LEUNG CHAN, AND KIRK PRUHS: Speed scaling with a solar
cell. Theoret. Comput. Sci., 410(45):4580–4587, 2009. Preliminary version in AAIM’08.
[doi:10.1016/j.tcs.2009.07.004] 213

[5] NIKHIL BANSAL, TRACY KIMBREL, AND KIRK PRUHS: Dynamic speed scaling to manage
energy and temperature. In Proc. 45th FOCS, pp. 520–529. IEEE Comp. Soc. Press, 2004.
[doi:10.1109/FOCS.2004.24] 211

[6] NIKHIL BANSAL, TRACY KIMBREL, AND KIRK PRUHS: Speed scaling to manage energy and
temperature. J. ACM, 54(1):3:1–3:39, March 2007. [doi:10.1145/1206035.1206038] 210, 211, 212

[7] NIKHIL BANSAL, KIRK PRUHS, AND CLIFFORD STEIN: Speed scaling for weighted
flow time. SIAM J. Comput., 39(4):1294–1308, 2009. Preliminary version in SODA’07.
[doi:10.1137/08072125X] 212

[8] DAVID M. BROOKS, PRADIP BOSE, STANLEY E. SCHUSTER, HANS JACOBSON, PRABHAKAR N.
KUDVA, ALPER BUYUKTOSUNOGLU, JOHN-DAVID WELLMAN, VICTOR ZYUBAN, MANISH

GUPTA, AND PETER W. COOK: Power-aware microarchitecture: Design and modeling challenges
for next-generation microprocessors. IEEE Micro, 20(6):26–44, 2000. [doi:10.1109/40.888701]
211

[9] HO-LEUNG CHAN, WUN-TAT CHAN, TAK-WAH LAM, LAP-KEI LEE, KIN-SUM MAK, AND

PRUDENCE W. H. WONG: Energy efficient online deadline scheduling. In Proc. 18th Ann. ACM-
SIAM Symp. on Discrete Algorithms (SODA’07), pp. 795–804. ACM Press, 2007. [ACM:1283468]
210

[10] SANDY IRANI AND KIRK R. PRUHS: Algorithmic problems in power management. SIGACT News,
36(2):63–76, 2005. [doi:10.1145/1067309.1067324] 213

[11] WOO-CHEOL KWON AND TAEWHAN KIM: Optimal voltage allocation techniques for dynamically
variable voltage processors. ACM Trans. Embed. Comput. Syst., 4(1):211–230, February 2005.
Preliminary version in DAC’03. [doi:10.1145/1053271.1053280] 210, 213

THEORY OF COMPUTING, Volume 8 (2012), pp. 209–229 227

http://dx.doi.org/10.1145/1735223.1735245
http://dx.doi.org/10.1145/1248377.1248424
http://portal.acm.org/citation.cfm?id=1792939
http://dx.doi.org/10.1007/978-3-540-68880-8_4
http://dx.doi.org/10.1016/j.tcs.2009.07.004
http://dx.doi.org/10.1109/FOCS.2004.24
http://dx.doi.org/10.1145/1206035.1206038
http://dl.acm.org/citation.cfm?id=1283383.1283469
http://dx.doi.org/10.1137/08072125X
http://dx.doi.org/10.1109/40.888701
http://portal.acm.org/citation.cfm?id=1283468
http://dx.doi.org/10.1145/1067309.1067324
http://dx.doi.org/10.1145/775832.775867
http://dx.doi.org/10.1145/1053271.1053280
http://dx.doi.org/10.4086/toc

NIKHIL BANSAL, HO-LEUNG CHAN, DMITRIY KATZ, AND KIRK PRUHS

[12] MINMING LI, BECKY JIE LIU, AND FRANCES F. YAO: Min-energy voltage allocation for tree-
structured tasks. J. Combinatorial Optimization, 11(3):305–319, 2006. [doi:10.1007/11533719_30]
210

[13] MINMING LI, ANDREW C. YAO, AND FRANCES F. YAO: Discrete and continuous min-energy
schedules for variable voltage processors. In Proc. Nat. Acad. Sci. USA, volume 103, pp. 3983–3987,
2006. 213

[14] MINMING LI AND FRANCES F. YAO: An efficient algorithm for computing optimal discrete voltage
schedules. SIAM J. Comput., 35:658–671, 2005. [doi:10.1137/050629434] 210, 213

[15] KIRK PRUHS: Competitive online scheduling for server systems. SIGMETRICS Perform. Eval.
Rev., 34(4):52–58, 2007. [doi:10.1145/1243401.1243411] 214

[16] FRANCES YAO, ALAN DEMERS, AND SCOTT SHENKER: A scheduling model for re-
duced CPU energy. In Proc. 36th FOCS, pp. 374–382. IEEE Comp. Soc. Press, 1995.
[doi:10.1109/SFCS.1995.492493] 210, 211, 213

[17] HAN-SAEM YUN AND JIHONG KIM: On energy-optimal voltage scheduling for fixed-priority
hard real-time systems. ACM Trans. Embedded Computing Systems, 2(3):393–430, 2003.
[doi:10.1145/860176.860183] 210

AUTHORS

Nikhil Bansal
Eindhoven University of Technology
The Netherlands
bansal tue nl
http://www.win.tue.nl/~nikhil/

Ho-Leung Chan
Department of Computer Science
The University of Hong Kong, Hong Kong
hlchan cs hku hk
http://i.cs.hku.hk/~hlchan/

Dmitriy Katz
Research Staff Member
IBM T.J. Watson, Yorktown, New York
dimdim alum mit edu

THEORY OF COMPUTING, Volume 8 (2012), pp. 209–229 228

http://dx.doi.org/10.1007/11533719_30
http://dx.doi.org/10.1137/050629434
http://dx.doi.org/10.1145/1243401.1243411
http://dx.doi.org/10.1109/SFCS.1995.492493
http://dx.doi.org/10.1145/860176.860183
http://www.win.tue.nl/~nikhil/
http://i.cs.hku.hk/~hlchan/
http://dx.doi.org/10.4086/toc

IMPROVED BOUNDS FOR SPEED SCALING IN DEVICES OBEYING THE CUBE-ROOT RULE

Kirk Pruhs
Computer Science Dept.
University of Pittsburgh, USA
kirk cs pitt edu
http://www.cs.pitt.edu/~kirk/

ABOUT THE AUTHORS

NIKHIL BANSAL graduated from CMU in 2003; his advisor was Avrim Blum. His research
has focused on approximation and online algorithms for scheduling and other optimiza-
tion problems. He worked at the IBM T. J. Watson Research Center from 2003 to 2011,
where he also managed the Algorithms Group for some time. He recently moved to the
Netherlands, and is still getting used to the idea that he can bike to anywhere without
being run down by cars and trucks.

HO-LEUNG CHAN obtained his Ph. D. from The University of Hong Kong in 2007; his
advisor was Tak-Wah Lam. His research interest is mainly in energy-efficient scheduling
and other scheduling problems.

DMITRIY KATZ graduated from MIT in 2008. His advisors were Dimitris Bertsimas
and David Gamarnik. His research interests lie in several areas of Computer Science
and Applied Mathematics, including questions of decidability, combinatorial counting,
queueing theory, and optimization.

KIRK PRUHS received his Ph. D. in 1989 from the from the University of Wisconsin -
Madison. He is currently a professor of computer science at the University of Pittsburgh.
His current research interests are in algorithmic problems related to resource management,
scheduling, and sustainable computing. Within the algorithmic scheduling community,
he is widely recognized as the leading expert on Mafia.

THEORY OF COMPUTING, Volume 8 (2012), pp. 209–229 229

http://www.cs.pitt.edu/~kirk/
http://www.cmu.edu/index.shtml
http://www.cs.cmu.edu/~avrim/
http://www.hku.hk/
http://web.mit.edu/
http://www.mit.edu/~dbertsim/
http://www.mit.edu/~gamarnik/home.html
http://www.wisc.edu
http://www.wisc.edu
http://dx.doi.org/10.4086/toc

	Introduction
	The story to date
	Our contributions
	Other related results

	Formal problem statement
	Upper bound analysis of qOA
	General lower bound
	Lower Bounds for qOA
	References

