
THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51
www.theoryofcomputing.org

Time-Space Efficient Simulations of
Quantum Computations

Dieter van Melkebeek∗ Thomas Watson†

Received: January 3, 2011; published: January 15, 2012.

Abstract: We give two time- and space-efficient simulations of quantum computations
with intermediate measurements, one by classical randomized computations with unbounded
error and the other by quantum computations that use an arbitrary fixed universal set of
gates. Specifically, our simulations show that every language solvable by a bounded-error
quantum algorithm running in time t and space s is also solvable by an unbounded-error
randomized algorithm running in time O(t · log t) and space O(s+ log t), as well as by a
bounded-error quantum algorithm restricted to use an arbitrary universal set and running
in time O(t · polylog t) and space O(s+ log t), provided the universal set is closed under
adjoint. We also develop a quantum model that is particularly suitable for the study of general
computations with simultaneous time and space bounds.

As an application of our randomized simulation, we obtain the first nontrivial lower
bound for general quantum algorithms solving problems related to satisfiability. Our bound
applies to MAJSAT and MAJMAJSAT, which are the problems of determining the truth

∗Partially supported by NSF awards CCF-0728809 and CCF-1017597, and by the Humboldt Foundation.
†Supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-0946797 and by the

National Science Foundation under Grant No. CCF-1017403 while at the University of California, Berkeley. Partially supported
by a Computer Science Department Summer Research Fellowship and a Barry M. Goldwater Scholarship while at the University
of Wisconsin-Madison.

ACM Classification: F.1.1, F.1.2, F.1.3, F.2.1, F.2.3

AMS Classification: 68Q05, 68Q10, 68Q15, 68Q17, 81P68

Key words and phrases: quantum computing, satisfiability, simulations, Solovay-Kitaev, time-space
lower bounds

2012 Dieter van Melkebeek and Thomas Watson
Licensed under a Creative Commons Attribution License DOI: 10.4086/toc.2012.v008a001

http://dx.doi.org/10.4086/toc
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2012.v008a001

DIETER VAN MELKEBEEK AND THOMAS WATSON

value of a given Boolean formula whose variables are fully quantified by one or two majority
quantifiers, respectively. We prove that for every real d and every positive real δ there exists
a real c > 1 such that either MAJMAJSAT does not have a bounded-error quantum algorithm
running in time O(nc), or MAJSAT does not have a bounded-error quantum algorithm
running in time O(nd) and space O(n1−δ). In particular, MAJMAJSAT does not have a
bounded-error quantum algorithm running in time O(n1+o(1)) and space O(n1−δ) for any
δ > 0. Our lower bounds hold for any reasonable uniform model of quantum computation,
in particular for the model we develop.

1 Introduction

Motivated by an application to time-space lower bounds, we establish two efficient simulations of
quantum computations with simultaneous time and space bounds. Our first result shows how to simulate
quantum computations with intermediate measurements by classical randomized computations with
unbounded error in a way that is both time- and space-efficient. For bounded-error quantum computations
our simulation only incurs a logarithmic factor overhead in time and a constant factor overhead in
space. Modulo some minor technicalities, this simulation subsumes and improves all previously known
simulations of bounded-error quantum computations by unbounded-error randomized computations.

Theorem 1.1 (Randomized simulation). Every language solvable by a bounded-error quantum algorithm
running in time t ≥ logn and space s≥ logn with algebraic transition amplitudes is also solvable by an
unbounded-error randomized algorithm running in time O(t · log t) and space O(s+ log t), provided t
and s are constructible by a deterministic algorithm with the latter time and space bounds.

In fact, Theorem 1.1 holds more generally for transition amplitudes that satisfy a certain mild
approximability condition (see Theorem 3.1 and Theorem 3.2 in Section 3.1, and Definition 2.1 and
Definition 2.2 in Section 2.3.2).

Our second simulation deals with the quantum compiling problem: given a quantum computer
implementation that has a fixed universal library of unitary gates, and given a quantum algorithm with an
arbitrary library specified by the algorithm designer, compile the algorithm into a form that can run on
the available computer. We show how to do this in a way that is both time- and space-efficient as long as
the universal set is closed under adjoint. For bounded-error quantum computations our simulation only
incurs a polylogarithmic factor overhead in time and a constant factor overhead in space. This is the first
rigorous result on quantum compiling in a model of computation with finite-precision arithmetic, and
it strengthens the well-known Solovay-Kitaev theorem [25] by reducing the space bound to the natural
barrier imposed by the numerical nature of the algorithm.

Theorem 1.2 (Quantum simulation). For every universal set S of unitary gates with algebraic entries
that is closed under adjoint, every language solvable by a bounded-error quantum algorithm running
in time t and space s with algebraic transition amplitudes is also solvable by a bounded-error quantum
algorithm running in time O(t ·polylog t) and space O(s+ log t) whose library of gates is S, provided t is
constructible by a deterministic algorithm with the latter time and space bounds.

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 2

http://dx.doi.org/10.4086/toc

TIME-SPACE EFFICIENT SIMULATIONS OF QUANTUM COMPUTATIONS

Like Theorem 1.1, Theorem 1.2 holds more generally under a mild approximability condition on the
transition amplitudes and the entries of the gates in S (see Theorem 4.2 in Section 4.1 and Definition 2.1
in Section 2.3.2).

For such fine-grained simulations to be meaningful, we need a model of quantum computation that
allows us to accurately measure time and space complexity simultaneously. Another contribution of this
paper is the development of such a model. The existing models give rise to various issues. For example,
intermediate measurements are needed for time-space efficient simulations of randomized computations
by quantum computations. Several of the known models only allow measurements at the end of the
computation but not during the computation. As another example, the known time-space lower bounds
for classical algorithms (see [37] for a survey) hold for models with random access to the input and
memory. This makes the lower bounds more meaningful as they do not exploit artifacts due to sequential
access. Extending the standard quantum Turing machine model [8] to accommodate random access leads
to complications that make the model inconvenient to work with. In Section 2 we discuss these and other
issues, survey the known models from the literature, and present a model that addresses all the issues we
raise and is capable of efficiently simulating all currently envisioned realizations of quantum computing.

We point out that our arguments for Theorem 1.1 and Theorem 1.2 are very robust with respect to the
details of the model. However, our results are more meaningful for models that accurately reflect time
and space, which our model does.

The starting point for the construction in Theorem 1.1 is a simulation due to Adleman et al. [1] (as
streamlined by Fortnow and Rogers [19]), which is the only previously known time-efficient simulation.
That simulation does not deal with intermediate measurements in a space-efficient way, and it incurs a
polylogarithmic factor overhead in running time. We show how to handle intermediate measurements
with only a constant factor overhead in space, moreover using only a logarithmic factor overhead in time.
Reducing the space involves modifying the techniques of [19] to ensure that each bit of the sequence of
coin flips is only referenced once (and thus no space needs to be used to remember it). We reduce the
time by directly handling nonunitary approximations to the library gates, rather than appealing to unitary
approximations (which incur a polylogarithmic factor time overhead). Also, our construction handles
computations in which the sequence of local quantum operations can depend on previous measurement
outcomes; such computations are seemingly more powerful than uniform quantum circuits. This result is
developed in Section 3, where we also give a detailed comparison with earlier simulations.

The main component in the proof of Theorem 1.2 is a strengthening of the classic Solovay-Kitaev
theorem [25]. The latter theorem shows how to approximate any unitary quantum gate within ε using
a sequence of at most polylog(1/ε) gates from an arbitrary universal set (provided the set is closed
under adjoint). To prove Theorem 1.2, we need a deterministic algorithm for computing such a sequence
in time polylog(1/ε) and space O(log(1/ε)), in a standard finite-precision model of computation in
which every bit counts toward the complexity. If we allow space polylog(1/ε) then such an algorithm
can be gleaned from the proof of the Solovay-Kitaev theorem by analyzing the precision needed for
the numerical calculations. More ideas are needed to bring the space complexity down to the natural
barrier of O(log(1/ε)) while maintaining a polylog(1/ε) running time. Our improvement has two main
components. First, we modify the algorithm’s numerical core to combat the accumulation of error that
is inherent in the conditioning. We make use of a known result from matrix theory. We also use an
idea due to Nagy [30] which allows us to bypass the need for certain numerical calculations that would

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 3

http://dx.doi.org/10.4086/toc

DIETER VAN MELKEBEEK AND THOMAS WATSON

require too much precision when dealing with multi-qubit gates. Second, we modify the algorithm’s
overall architecture to save space. The simulation in Theorem 1.2 is then mostly a matter of applying
our space-efficient algorithm to each unitary gate in the original quantum computation.1 In Section 4 we
explain the ideas behind our improvement of the Solovay-Kitaev theorem, give the formal proof, and
derive Theorem 1.2.

As an application of Theorem 1.1, we obtain the first nontrivial time-space lower bounds for quantum
algorithms solving problems related to satisfiability, the seminal NP-complete problem. We show how to
transfer the time-space lower bounds of Allender et al. [2] from classical unbounded-error randomized
algorithms to bounded-error quantum algorithms. The lower bounds apply to analogues of satisfiability
in the first two levels of the counting hierarchy, namely MAJSAT and MAJMAJSAT (see [4] for an
introduction to the counting hierarchy). MAJSAT, short for majority-satisfiability, denotes the problem
of deciding whether the majority of the assignments to a given Boolean formula satisfy the formula.
Similarly, an instance of MAJMAJSAT asks whether a given Boolean formula depending on two sets
of variables y and z has the property that for at least half of the assignments to y, at least half of the
assignments to z satisfy the formula.

Theorem 1.3. For every real d and every positive real δ there exists a real c > 1 such that either

• MAJMAJSAT does not have a bounded-error quantum algorithm running in time O(nc) with
algebraic transition amplitudes, or

• MAJSAT does not have a bounded-error quantum algorithm running in time O(nd) and space
O(n1−δ) with algebraic transition amplitudes.

In particular, Theorem 1.3 implies the following time-space lower bound for MAJMAJSAT.

Corollary 1.4. MAJMAJSAT does not have a bounded-error quantum algorithm running in time
O(n1+o(1)) and space O(n1−δ) with algebraic transition amplitudes, for any δ > 0.

The quantitative strength of our lower bounds for MAJSAT and MAJMAJSAT derives from [2];
thanks to the efficiency of Theorem 1.1, the translation does not induce any weakening. In contrast,
none of the previously known simulations of bounded-error quantum computations by unbounded-error
randomized computations are strong enough to yield nontrivial quantum lower bounds for problems
related to satisfiability. In Section 5 we provide some more background on time-space lower bounds,
derive Theorem 1.3, and present some directions for further research.

2 Models of quantum computation

In this section we develop the model that we use for the exposition of our arguments. Although we
consider the development of such a model as a significant contribution of our paper, the crux of our main
results can be understood at an abstract level. As such, a reader who would like to quickly get to the heart
of our paper can skim Section 2.3 and then continue with Section 3 or with Section 4.

1In particular, the space overhead in the simulation is only in classical bits, not qubits, since the simulation essentially just
overlays some deterministic computation on the original quantum computation.

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 4

http://dx.doi.org/10.4086/toc

TIME-SPACE EFFICIENT SIMULATIONS OF QUANTUM COMPUTATIONS

In Section 2.1 we discuss the issues that arise in choosing a model of quantum computation that
accurately reflects time and space complexity. Section 2.2 describes how previously studied models fit
into our taxonomy, and it can be skipped without loss of continuity. We motivate and precisely define our
chosen model in Section 2.3.

2.1 Issues

Our model should capture the notion of a quantum algorithm as viewed by the computer science and
physics communities and allow us to accurately measure the resources of time and space. For example,
the model should allow us to express important quantum algorithms such as Shor’s [35] and Grover’s [21]
in a way that is natural and faithfully represents their complexities. This forms the overarching issue in
choosing a model. Below we discuss eight specific aspects of quantum computation models and describe
how the corresponding issues are handled in the classical setting.

Sublinear space bounds Many algorithms have the property that the amount of work space needed is
less than the size of the input. Models such as one-tape Turing machines do not allow us to accurately
measure the space usage of such algorithms because they charge for the space required to store the input.
In the deterministic and randomized settings, sublinear space bounds are accommodated by considering
Turing machines with a read-only input tape that does not count toward the space bound and read-write
work tapes that do. In the quantum setting, we need a model with an analogous capability.

Random access to the input and memory In order to accurately reflect the complexity of computa-
tional problems, our model should include a mechanism for random access, i. e., the ability to access
any part of the input or memory in a negligible amount of time (say, linear in the length of the address).
For example, there is a trivial algorithm for the language of palindromes running in quasilinear time and
logarithmic space on standard models with random access, but to decide palindromes on a traditional
sequential-access Turing machine with one head per tape, the time-space product needs to be at least
quadratic. The latter result does not reflect the complexity of deciding palindromes, but rather exploits
the fact that sequential-access machines may have to waste a lot of time moving their tape heads back and
forth. Classical Turing machines can be augmented with a mechanism to support random access; our
quantum model should also have such a mechanism.

Intermediate measurements Unlike the previous two issues, intermediate measurements are specific
to the quantum setting. In time-bounded quantum computations, it is customary to assume that all
measurements occur at the end. This is because intermediate measurements can be postponed by
introducing ancilla qubits to store (unitarily) what would be the result of the measurement, thus preventing
computation paths with different measurement outcomes from interfering with each other. However, this
has a high cost in space—a computation running in time t may make up to t measurements, so the space
overhead could be as large as t, which could be exponential in the original space bound. This suggests
that postponing measurements might be inherently costly in space (although we are not aware of any
formal evidence for this). Hence, to handle small space bounds our model should allow intermediate
measurements. This is crucial for our model to meet the expectation of being at least as strong as

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 5

http://dx.doi.org/10.4086/toc

DIETER VAN MELKEBEEK AND THOMAS WATSON

randomized algorithms with comparable efficiency parameters; the standard way to “flip a coin” in the
quantum setting is to apply a Hadamard gate to a qubit in a basis state and then measure it. Also, many
quantum algorithms are naturally described using intermediate measurements.

We also need to decide which measurements to allow. Projective measurements in the computational
basis are the most natural choice. Should we allow projective measurements in other bases? How about
fully general measurements (see Section 2.2.3 in [31]), where the measurement operators need not be
projections? General measurements can be performed by introducing ancilla qubits (at a cost in space),
performing a change of basis (at a cost in time), and doing a projective measurement in the computational
basis, one qubit at a time. It is reasonable to charge the complexity of these operations to the algorithm
designer, so we are satisfied with allowing only single-qubit measurements in the computational basis.

Obliviousness to the computation history Computations proceed by applying a sequence of local
operations to data. We call a computation nonoblivious if at each step, which local operation to use and
which operands to apply it to may depend on the computation history. A generic deterministic Turing
machine computation is nonoblivious. We can view each state as defining an operation on a fixed number
of tape cells, where the operands are given by the tape head locations. In each step, the outcome of the
applied operation affects the next state and tape head locations, so both the operation and the operands can
depend on the computation history. In contrast, a classical circuit computation is oblivious because neither
the operation (gate) nor the operands (wires connected to the gate inputs) depend on the computation
history (values carried on the wires).

In the randomized and quantum settings, the notion of a computation history becomes more compli-
cated because there can be many computation paths. In the randomized setting, applying a randomized
operation to a configuration may split it into a distribution over configurations, and the randomized
Turing machine model allows the next state and tape head locations to depend on which computation
path was taken. In the quantum setting, applying a quantum operation to a basis state may split it into a
superposition over several basis states, and general nonoblivious behavior would allow the next operation
and operands to depend on which computation path was taken. However, it is unclear whether such
behavior is physically realizable, as currently envisioned technologies all select quantum operations
classically. An intermediate notion of nonobliviousness, where the operations and operands may depend
on previous measurement outcomes but not on the quantum computation path, does seem physically
realistic (see for example [42, section 2.5.2] and the references within).

Classical control There is a wide spectrum of degrees of interaction between a quantum computation
and its classical control. On the one hand, one can imagine a quantum computation that is entirely
“self-sufficient,” other than the interaction needed to provide the input and observe the output. On the
other hand, one can imagine a quantum computation that is guided classically every step of the way. Self-
sufficiency is inherent to computations that are nonoblivious to the quantum computation path, whereas
measurements are inherently classically controlled operations. Incorporating intermediate measurements
into computations that are nonoblivious to the quantum computation path would require some sort of
global coordination among the quantum computation paths to determine when a measurement should
take place.

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 6

http://dx.doi.org/10.4086/toc

TIME-SPACE EFFICIENT SIMULATIONS OF QUANTUM COMPUTATIONS

Syntax Our model should be syntactic, meaning that identifying valid programs in the model is
decidable. If we are interested in bounded-error computations, then we cannot hope to decidably
distinguish programs satisfying the bounded-error promise from those that do not. However, we should
be able to distinguish programs that are correctly formatted (according to the postulates of quantum
mechanics) from those that are not. Allowing nonobliviousness to the quantum computation path
complicates this syntax check. If different components of the superposition can undergo different unitary
operations then the overall operation is not automatically unitary, due to interference. Extra conditions on
the transition function are needed to guarantee unitarity.

Complexity of the transition amplitudes Care should be taken in specifying the allowable transition
amplitudes. In the randomized setting, it is possible to solve undecidable languages by encoding the
characteristic sequences of these languages in the transition probabilities. This problem is usually handled
by using a certain universal set of elementary randomized operations, e. g., an unbiased coin flip. In
the quantum setting, the same problem arises with unrestricted amplitudes. Again, one can solve the
problem by restricting the elementary quantum operations to a universal set. However, unlike in the
randomized setting, there is no single standard universal set like the unbiased coin flip with which all
quantum algorithms are easy to describe. Algorithm designers should be allowed to use arbitrary local
operations provided they do not smuggle hard-to-compute information into the amplitudes.

Absolute halting In order to measure time complexity, we should use a model that naturally allows
any algorithm to halt absolutely within some time bound t. In the randomized setting, one can design
algorithms whose running times are random variables and may actually run forever. We can handle such
algorithms by clocking them, so that they are forced to halt within some fixed number of time steps. Our
quantum model should provide a similar mechanism.

2.2 Earlier models

Now that we have spelled out the relevant issues and criteria, we consider several previously studied
models as candidates.

2.2.1 Models with quantum control

Bernstein and Vazirani [8] laid the foundations for studying quantum complexity theory using quantum
Turing machines. Their model uses a single tape and therefore cannot handle sublinear space bounds.
Like classical one-tape Turing machines, their model is sequential-access. It does not allow intermediate
measurements. On the other hand, their model is fully nonoblivious: the transition function produces a
superposition over basis configurations, and the state and tape head location may be different for different
components of the superposition. Their model represents the self-sufficient extreme of the classical
control spectrum. In their paper, Bernstein and Vazirani prove that their model is syntactic by giving a few
orthogonality constraints on the entries of the transition function table that are necessary and sufficient for
the overall evolution to be unitary. These conditions are somewhat unintuitive, and can be traced back to
the possibility of nonobliviousness to the quantum computation path. Bernstein and Vazirani restrict the
transition amplitudes by requiring that the first k bits of each amplitude are computable deterministically

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 7

http://dx.doi.org/10.4086/toc

DIETER VAN MELKEBEEK AND THOMAS WATSON

in time poly(k). Their model is nontrivial to clock; they require that the transition function be designed in
such a way that the machine always halts, meaning that it reaches a superposition in which all non-halting
basis configurations have zero amplitude. Bernstein and Vazirani detail how to design such mechanisms.

In [38] Watrous considers a model similar to Bernstein and Vazirani’s, but with one read-write
work tape and a read-only input tape not counting toward the space bound. The model naturally allows
for sublinear space bounds, but it is still sequential-access. It allows intermediate measurements but
only for the halting mechanism: a special register is measured after each time step, with the outcome
indicating “halt and output 1,” “halt and output 0,” or “continue.” The model is nonoblivious like the
Bernstein-Vazirani model. It has more classical interaction due to the halting mechanism, but this is
arguably not “classical control.” The syntax conditions on the transition function are similar to those
for the Bernstein-Vazirani model. The results in [38] require the transition amplitudes to be rational,
which is somewhat unappealing since one may often wish to use Hadamard gates, which have irrational
amplitudes. Similar to the Bernstein-Vazirani model, the model is nontrivial to clock. In fact, the results
in [38] rely on counting an infinite computation as a rejection.

The paper [43] describes a model similar to the one from [38] but without any restriction on the
transition amplitudes. Another model is also described in [43] where the tape head movements are
classical but the finite control is still quantum.

The main issue with the above models for our purposes is their sequential-access nature. It is possible
to handle this problem by imposing a random-access mechanism. However, the conditions on the entries
of the transition function table characterizing unitary evolution become more complicated and unintuitive,
making the model inconvenient to work with. Again, the culprit is the nonobliviousness to the quantum
computation path. Since this behavior does not appear to be physically realizable in the foreseeable future
anyway, the complications arising from it are in some sense unjustified.

2.2.2 Models with classical control

In [39] Watrous considers a different model of space-bounded quantum computation. This model is
essentially a classical Turing machine with an additional quantum work tape and a fixed-size quantum
register. Sublinear space bounds are handled by charging for the space of the classical work tape and
the quantum work tape but not the input tape. All three tape heads move sequentially. This model
handles intermediate measurements. It is oblivious to the quantum computation path; the state and tape
head locations cannot be in superposition with the contents of the quantum work tape. However, the
computation is nonoblivious to the classical computation history, including the measurement outcomes.
The finite control is classical; in each step it selects a quantum operation and applies it to the combination
of the qubit under the quantum work tape head together with the fixed-size register. The register is needed
because there is only one head on the quantum work tape, but a quantum operation needs to act on multiple
qubits to create entanglement. The allowed operations come from the so-called quantum operations
formalism (see [31, chapter 8]), which encompasses unitary operations and general measurements, as
well as interaction with an external environment. Each quantum operation produces an output from a
finite alphabet—the measurement outcome in the case of a measurement. This outcome influences the
next (classical) transition. This model is syntactic just like classical Turing machines, with the additional
step of testing that each quantum operation satisfies the definition of a valid quantum operation. For his
constructions, Watrous needs the transition amplitudes to be algebraic. This model is trivial to clock,

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 8

http://dx.doi.org/10.4086/toc

TIME-SPACE EFFICIENT SIMULATIONS OF QUANTUM COMPUTATIONS

since all the control is done classically and thus the machine can halt in a fixed number of steps, just as in
the classical setting.

Perdrix and Jorrand [32] study a model they dub a “classically-controlled quantum Turing machine.”
Their model is like a classical multitape Turing machine, but where the cells are quantum; in each step,
classical machinery dictates the quantum operation that is applied to the cells under the tape heads. The
model handles neither sublinear-space algorithms nor random access to memory. The authors allow
intermediate measurements, and they consider two variations: one where the local operations come from
the quantum operations formalism, and one where only projective measurements are allowed. The model
is oblivious to the quantum computation path but nonoblivious to the intermediate measurement outcomes.
Like Watrous’s model from [39], the control is classical, so syntax and absolute halting are not a problem.
The issue of the complexity of the transition amplitudes is not addressed in [32].

These two models are convenient to work with since the essence of the quantum aspects of a
computation are isolated into local operations that are chosen classically and applied to a simple quantum
register. This reflects the currently envisioned realizations of quantum computers (see for example [28]
and the references within for superconductor-based technologies, [10] for trapped ion technologies, [33]
for quantum optics technologies, and the references in the survey [29] for quantum dot technologies; see
also the classic article [16]). Watrous’s model from [39] is the most suitable as a starting point for the
exposition of our results, but we need to make some modifications to it in order to address the following
issues.

We want our model to have random access to emphasize the fact that our time-space lower bound does
not exploit any model artifacts due to sequential access. We can make the model from [39] random-access
by allowing each of the tape heads to jump in unit time to a location whose address we have classically
computed, just as can be done for deterministic and randomized Turing machines.

The quantum operations used in the model from [39] are more general than we need to consider.
The quantum operations formalism models the evolution of open systems, which is of information-
theoretic rather than computational concern [31]. We choose to restrict the set of allowed operations
to unitary operations and projective measurements in the computational basis. This is without loss of
generality since an operation from the quantum operations formalism can be simulated by introducing
an additional “environment” system with a constant number of qubits, performing a unitary operation,
and then measuring the environment qubits in the computational basis [31]. Using nonobliviousness to
measurement outcomes, we can then reset the environment qubits for use in simulating the next quantum
operation.

Algorithms like Grover’s require quantum access to the input, i. e., an operation that allows different
basis states in a superposition to access different bits of the input simultaneously. On inputs of length n,
this is done with a query gate that effects the transformation |i〉|b〉 7→ |i〉|b⊕ xi〉 where i ∈ {0,1}dlog2 ne,
b ∈ {0,1}, and xi is the ith bit of the input. The model from [39] does not have such an operation and thus
cannot express algorithms like Grover’s. While this operation seems no more physically realistic than
nonobliviousness to the quantum computation path if we view the input as stored in a classical memory,
it does make sense when the input is actually the output of another computation. For these reasons, we
include such an operation in our model.

Finally, our restriction on the transition amplitudes is similar to the one assumed by Bernstein and
Vazirani, and is more general than algebraic numbers.

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 9

http://dx.doi.org/10.4086/toc

DIETER VAN MELKEBEEK AND THOMAS WATSON

2.3 Our model

For concreteness, we now describe and motivate the particular model we use for the exposition of our
arguments. Our model addresses all the issues listed in Section 2.1 and is an adaptation of Watrous’s
model from [39], as described at the end of Section 2.2.

In a nutshell, our model of a quantum algorithm running in time t and space s consists of a classically
controlled machine that applies t operations to s bits and qubits, and which supports random access to the
input and memory and can be influenced by intermediate measurement outcomes. We more formally
define our model in Section 2.3.1 and then discuss the complexity measures for our model in Section 2.3.2.

2.3.1 Model definition

We define a quantum algorithm as follows. There are three semi-infinite tapes: the input tape, the classical
work tape, and the quantum work tape. Each cell on the input tape holds one bit or a blank symbol. Each
cell on the classical work tape holds one bit. Each cell on the quantum work tape holds one qubit. The
input tape contains the input, a string in {0,1}n, followed by blanks, and the classical and quantum work
tapes are initialized to all 0’s. There are a fixed number of tape heads, each of which is restricted to one
of the three tapes. There may be multiple heads moving independently on the same tape.

The finite control, the head movements on all tapes, and the operations on the classical work tape are
all classical; each operation on the quantum work tape can be either a unitary operator or a single-qubit
projective measurement in the computational basis. In each step of the computation, the finite control of
the algorithm is in one of a finite number of states. Each state has an associated classical function, which
is applied jointly to the contents of the cells under the heads on the classical work tape, and an associated
quantum operation, which is applied jointly to the contents of the cells under the heads on the quantum
work tape. The next state of the finite control and the head movements are determined by the current
state, the contents of the cells under the input tape heads and classical work tape heads at the beginning
of the computation step, and the measurement outcome if the quantum operation was a measurement.

Each head moves left one cell, moves right one cell, stays where it is, or jumps to a new location at a
precomputed address. The latter type of move is classical random access. We also allow “quantum random
access” to the input by optionally performing a query that effects the transformation |i〉|b〉 7→ |i〉|b⊕ xi〉
on a contiguous block of qubits on the quantum work tape, where i ∈ {0,1}∗ is an index into the input,
b ∈ {0,1}, and xi is the ith bit of the input of length n or 0 if i > n. To specify addresses for classical
random access, as well as the two endpoint addresses of the block for quantum random access, the
algorithm can write addresses on special one-way sequential-access write-only index tapes, which get
erased after each time they are used.

Among the states of the finite control are an “accept” state and a “reject” state, which cause the
algorithm to halt. Although not needed in this paper, the algorithm can be augmented with a one-way
sequential-access write-only classical output tape in order to compute non-Boolean functions.

Let us motivate our model definition. In terms of physical computing systems, the input tape
corresponds to an external input source, the classical work tape corresponds to classical memory, and the
quantum work tape corresponds to quantum memory. The bits and qubits under the heads correspond to
the data being operated on in the CPU.

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 10

http://dx.doi.org/10.4086/toc

TIME-SPACE EFFICIENT SIMULATIONS OF QUANTUM COMPUTATIONS

We use multiple heads on each tape since many algorithms are naturally expressed using elementary
operations that involve more than one bit or qubit. Creating entanglement requires multiple-qubit
operations and hence multiple quantum work tape heads. The index tapes are needed for random access
since addresses have non-constant length and thus cannot fit under the tape heads all at once. A minor
issue arises with our multiple head approach: an operation on a work tape may not be well-defined if two
of the heads are over the same cell. Rather than requiring programs to avoid this situation, which would
make the model non-syntactic, we can just assume that no operation is performed on the violating work
tape when this situation arises.

2.3.2 Complexity measures

We say that a quantum algorithm M runs in time t(n) if for all input lengths n, all inputs x of length n, and
all computation paths of M on input x, M halts in at most t(n) steps. We say that a quantum algorithm
M runs in space s(n) if for all input lengths n, all inputs x of length n, and all computation paths of
M on input x, the largest address of a classical work tape head or quantum work tape head during the
computation of M on input x is at most s(n). Either the time or the space may be infinite. Note that we
consider all computation paths, even ones that occur with probability 0 due to destructive interference.

The above definition of space usage allows the space to be exponential in the running time, since in
time t an algorithm can write an address that is exponential in t and move a head to that location using the
random-access mechanism. However, the space usage can be reduced to at most the running time with at
most a polylogarithmic factor increase in the latter by compressing the data and using an appropriate data
structure to store (old address, new address) pairs. (See Section 2.3.1 of [37] for a similar construction.)

We say that a quantum algorithm M solves a language L with error ε(n) if M has finite running time
and for all input lengths n and all inputs x of length n, Pr

(
M(x) 6= L(x)

)
≤ ε(n). We say the error is

bounded if ε(n)≤ 1/3 for all n and unbounded if ε(n)< 1/2 for all n.
For a unitary operator U , we let A(U) denote the set of absolute values of both the real and imaginary

parts of each matrix entry of U in the computational basis. For a set S of unitary operators, we let
A(S) =

⋃
U∈SA(U). Each quantum algorithm M has a library of q-qubit unitary operators it can use

(other than measurement gates and quantum query gates, which every quantum algorithm can use), where
q is the number of quantum work tape heads; we define A(M) to be A(S) where S is the set of library
gates of M. We use the following definitions to limit the complexity of the numbers in A(M). (The first
definition is used for both Theorem 1.1 and Theorem 1.2, while the second definition is only used for
Theorem 1.1.)

Definition 2.1. We say a deterministic algorithm A is a (t,s)-approximator for r ∈ [0,1] if given a positive
integer precision parameter p, A runs in time t(p) and space s(p) and outputs a nonnegative integer r̂ in
binary such that

∣∣r− r̂/2p
∣∣≤ 1/2p.

Definition 2.2. We say a nondeterministic algorithm G is a (t,s)-generator for r ∈ [0,1] if given a positive
integer precision parameter p, G runs in time t(p) and space s(p) and has r̂ accepting computation paths
such that

∣∣r− r̂/2p
∣∣≤ 1/2p.

For a complex matrix A, we let ‖A‖ denote the operator norm ‖A‖= supv 6=0 ‖Av‖/‖v‖ where ‖ · ‖ on
the right side denotes the 2-norm for vectors. Throughout this paper, we freely use the fact that for all

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 11

http://dx.doi.org/10.4086/toc

DIETER VAN MELKEBEEK AND THOMAS WATSON

d×d complex matrices A and B, if ‖A−B‖ ≤ ε then each of the 2d2 real numbers comprising A is within
ε of the corresponding real number in B, and conversely, if each of the 2d2 real numbers comprising A is
within ε of the corresponding real number in B, then ‖A−B‖ ≤

√
2dε . We weaken the latter bound to

2dε for notational simplicity throughout this paper.
As evidence in support of our model of choice, we note that the following results hold in our model.

• Every language solvable by a bounded-error randomized algorithm M running in time t and space
s is also solvable by a bounded-error quantum algorithm running in time O(t) and space s+1 that
directly simulates M and produces unbiased coin flips by applying a Hadamard gate to one qubit
and then measuring it. This qubit can be reused to generate as many random bits as needed.

• Grover’s algorithm [21] shows that OR (the problem of computing the disjunction of the n input
bits) is solvable by a bounded-error quantum algorithm running in time O(n1/2 · polylogn) and
space O(logn).

• Shor’s algorithm [35] shows that a nontrivial factor of an integer of bit length n can be computed in
time O(n3 ·polylogn) and space O(n) with error probability at most 1/3.

3 Randomized simulation

In this section we prove Theorem 1.1. In Section 3.1 we state our simulation result in full generality and
give several instantiations. We discuss the relationship of our result and its proof to previous simulations
in Section 3.2. In Section 3.3 we prove our general simulation result, and we conclude in Section 3.4
with some remarks on the proof.

3.1 General result and instantiations

We now state our general randomized simulation result.

Theorem 3.1. Suppose language L is solvable by a quantum algorithm M running in time t ≥ logn and
space s≥ logn with error ε < 1/2 having q quantum work tape heads, and such that each number in
A(M) has a (t ′,s′)-approximator. Then L is also solvable by an unbounded-error randomized algorithm
running in time O

(
t · p+ t ′(p)

)
and space O

(
s+ log t + p+ s′(p)

)
for any integer function

p≥ log2

(
5t ·2q+1

1/2− ε

)
,

provided t, s, and p are constructible by a deterministic algorithm with the latter time and space bounds.

The function p in Theorem 3.1 represents the precision parameter on which the simulation invokes
the approximators for the numbers in A(M). The parameters t, s, ε , and p are all functions of the input
length n, and the big O’s are with respect to n→ ∞. Regarding the conditions in Theorem 3.1 (and
Theorem 1.1), we assume t and s are at least logarithmic so that they dominate any logarithmic terms
arising from indexed access to the input. The constructibility constraints are satisfied by all “ordinary”
functions, which is sufficient for obtaining our lower bound, Theorem 1.3. Theorem 3.1 is a corollary of
the following even more general simulation.

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 12

http://dx.doi.org/10.4086/toc

TIME-SPACE EFFICIENT SIMULATIONS OF QUANTUM COMPUTATIONS

Theorem 3.2 (Main randomized simulation). Suppose language L is solvable by a quantum algorithm M
running in time t ≥ logn and space s≥ logn with error ε < 1/2 having q quantum work tape heads, and
such that each number in A(M) has a (t ′,s′)-generator. Then L is also solvable by an unbounded-error
randomized algorithm running in time O

(
t · t ′(p)

)
and space O

(
s+ log t + s′(p)

)
for any integer function

p≥ log2

(
5t ·2q+1

1/2− ε

)
,

provided t, s, p, and t ′(p) are constructible by a deterministic algorithm with the latter time and space
bounds. Moreover, the randomized algorithm uses the (t ′,s′)-generators only as black boxes.

The proof of Theorem 3.2 is given in Section 3.3. We now show how Theorem 3.2 implies Theorem 3.1
and Theorem 1.1.

Proof of Theorem 3.1. The randomized algorithm for L first runs the approximator for each number
r ∈ A(M) and stores the result r̂, then runs the simulation from Theorem 3.2 using

(
O(p),O(p)

)
-

generators that nondeterministically guess a (p+ 1)-bit nonnegative integer and accept iff it is less
than r̂. Note that the numbers in A(M) might not have actual

(
O(p),O(p)

)
-generators according to

Definition 2.2, but we can simulate oracle access to such generators using the precomputed values r̂.
Since the simulation from Theorem 3.2 only invokes the generators as black boxes, we can simulate each
call to a generator in time and space O(p), and so the simulation from Theorem 3.2 takes time O(t · p)
and space O

(
s+ log t + p

)
. The additional O(t ′(p)) time overhead and O(s′(p)) space overhead comes

from running the approximators to get the numbers r̂ once, at the beginning of the computation.

Proof of Theorem 1.1. If M has algebraic transition amplitudes, then each number in A(M) has a(
poly(p),O(p)

)
-approximator (by Newton’s method, with a little care taken to ensure the linear space

bound). Theorem 1.1 follows by setting ε = 1/3 and p =
⌈

log2(30t · 2q+1)
⌉

and applying Theo-
rem 3.1.

Theorem 1.1 deals with the standard setting of bounded error. To handle unbounded error, applying
Theorem 3.1 or Theorem 3.2 requires an upper bound on the precision p and hence a bound on how
close the error ε can be to 1/2. In the case of rational transition amplitudes, a simple bound yields the
following corollary to Theorem 3.2.

Corollary 3.3. Every language solvable by an unbounded-error quantum algorithm running in time
t ≥ logn and space s≥ logn with rational transition amplitudes is also solvable by an unbounded-error
randomized algorithm running in time O(t2) and space O(s+ log t), provided t and s are constructible by
a deterministic algorithm with the latter time and space bounds.

Proof. The acceptance probability of any quantum algorithm running in time t on a fixed input equals
a multivariate polynomial of total degree at most 2t with integer coefficients and whose variables are
evaluated at the numbers in A(M).2 Thus in the case of rational transition amplitudes, the acceptance prob-
ability can be expressed as a rational number where the denominator is the product of the denominators of

2This can be seen, for example, using the postponed measurement framework discussed in Section 3.3.2.

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 13

http://dx.doi.org/10.4086/toc

DIETER VAN MELKEBEEK AND THOMAS WATSON

the numbers in A(M) raised to the power 2t. This implies that if ε < 1/2, then in fact ε ≤ 1/2−2−O(t).
Using the fact that each rational number in [0,1] has a trivial

(
O(p),O(log p)

)
-generator, Theorem 3.2

yields the result.

It is natural to conjecture that whenever a quantum algorithm (with arbitrary transition amplitudes)
solves a language in time t with error ε < 1/2, then in fact ε ≤ 1/2− 2−O(t). However, Arnold has
shown this to be false [5]. In fact, he shows that ε cannot be bounded away from 1/2 by any function
of t; moreover, this holds even when the transition amplitudes are approximable and the function of t is
sufficiently constructible. Partial positive results are known for the case of algebraic amplitudes [39].

3.2 Intuition and relationship to previous work

There are three previously known simulations of quantum algorithms by unbounded-error randomized
algorithms: a time-efficient one [1, 19] and two space-efficient ones [38, 39]. Modulo some minor
technicalities, our simulation subsumes and improves all three for bounded-error quantum algorithms, and
it subsumes and improves the simulations of [1, 19] and [38] for unbounded-error quantum algorithms. We
now give a detailed comparison of our results and our proof techniques with these previous simulations.

The inclusion BQP⊆ PP was first proved by Adleman et al. [1], and the proof was later rephrased
using counting complexity tools by Fortnow and Rogers [19]. Under the assumption that the elemen-
tary quantum operations have been discretized in some unitary way, this simulation incurs a constant
factor overhead in running time. However, the fastest general method for unitary discretization is the
Solovay-Kitaev algorithm [25, 11], which incurs a polylog t factor overhead in running time for bounded-
error quantum computations. Also, the simulation of [1, 19] does not preserve the space bound when
intermediate measurements are allowed. Theorem 3.1 subsumes and improves the result of [1, 19] by
improving both the time and space overheads. Strictly speaking, the simulation of [1, 19] actually assumes
a quantum model that is nonoblivious to the quantum computation path (see Section 2) and is thus not
immediately captured by the statement of Theorem 3.1; however, with some technical work our proof
should extend to such models (see the remark in Section 3.4).

The proof of Theorem 3.2 uses the technique in [19] as a starting point. The basic idea of the latter
simulation is to write the final amplitude of a basis state as a simple linear combination of #P functions,
where each #P function counts the number of quantum computation paths leading to that state with a
certain path amplitude. Assuming the elementary quantum operations come from an appropriate discrete
universal set, simple algebraic manipulations can be used to express the probability of acceptance as the
difference between two #P functions, up to a simple common scaling factor. This leads to a time- and
space-efficient simulation by an unbounded-error randomized algorithm, assuming there is only a final
measurement and no intermediate measurements.

Intermediate measurements can be eliminated by instead copying the measurement results into
ancilla qubits. This could blow up the space bound to t, which could be exponential in s. We handle
intermediate measurements directly by first adapting the approach from the previous paragraph to
capture the probability of observing any particular sequence of measurement outcomes. The acceptance
probability can then be expressed as a sum over all sequences of measurement outcomes that lead to
acceptance, where each term is the scaled difference of two #P functions. We can combine those terms into
a single one using the closure of #P under uniform exponential sums. However, the usual way of doing

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 14

http://dx.doi.org/10.4086/toc

TIME-SPACE EFFICIENT SIMULATIONS OF QUANTUM COMPUTATIONS

this—nondeterministically guess and store a sequence and then run the computation corresponding to
that sequence—is too space-inefficient. To address this problem, we note that the crux of the construction
corresponds to multiplying two #P functions on related inputs. The standard approach runs the two
computations in sequence, accepting iff both accept. We argue that we can run these two computations
in parallel and keep them in sync so that they access each bit of the guessed sequence at the same time,
allowing us to reference each bit only once. We can then guess each bit when needed during the final
simulation and overwrite it with the next guess bit, allowing us to meet the space constraint.

Since the standard Solovay-Kitaev algorithm for unitary discretization (adapted to work with finite
precision) takes time and space polylog t for bounded-error quantum computations, this approach leads
to a simulation running in time O(t ·polylog t) and space O(s+polylog t). The space bound could be
reduced to O(s+ log t) using our space-efficient simulation with a universal set (Theorem 1.2), but to
also bring the running time down to O(t · log t) we eschew the Solovay-Kitaev algorithm altogether and
directly use nonunitary discretizations, which can be obtained by simply approximating each matrix
entry with O(log t) bits. Then using the technique from the previous paragraph, we can approximate the
probability of each sequence of measurement outcomes using a scaled difference of #P functions. A bit
of care is needed to ensure that the total error in the probability estimate, over these exponentially many
classical computation paths, is small enough.

Watrous [38] shows how to simulate unbounded-error quantum algorithms running in space s with
rational amplitudes by unbounded-error randomized algorithms running in space O(s). His technique
is genuinely different than ours; he first gives an O(s)-space reduction to the problem of comparing the
determinants of two 2O(s)×2O(s) integer matrices to see which is larger, and then uses a logarithmic space
unbounded-error randomized algorithm for this problem due to Allender and Ogihara [3].

In [38], Watrous allows nonobliviousness to the quantum computation path, but as with [1, 19], this is
not a genuine obstacle. Another technicality is that he allows t 6≤ 2O(s) while still achieving an O(s) space
simulation. In fact, he allows space-bounded quantum algorithms to run forever, counting an infinite
computation as a rejection, which does not correspond to a realistic computational process. However, in
our general model, if a quantum algorithm runs in time t 6≤ 2O(s) then for infinitely many input lengths, it
cannot even keep track of its own running time, and for t = polyn it cannot even write down an address
into the input and so it must exploit sequential access in order to do something nontrivial. In the normal
case when t ≤ 2O(s), the result from [38] is subsumed and improved by Corollary 3.3 since the latter has
a running time of O(t2) whereas the result from [38] has no bound on the running time of the simulation.

In another paper, Watrous [39] shows again how to simulate unbounded-error quantum algorithms
running in space s by unbounded-error randomized algorithms running in space O(s), assuming a different
model of quantum computation which allows algebraic transition amplitudes. He first shows how to
approximate arbitrary algebraic numbers using ratios of GapL functions, then he space-efficiently reduces
the quantum computation to the problem of computing the sign of a particular entry in a certain infinite
series of matrices, and finally he gives a logarithmic space unbounded-error randomized algorithm for
the latter problem. As in [38] he allows t 6≤ 2O(s), whereas all known natural algorithms satisfy t ≤ 2O(s).
He uses the quantum operations formalism with algebraic amplitudes, but this can be simulated in our
model (see the discussion in Section 2.2.2). In the normal case when t ≤ 2O(s), the result from [39],
restricted to bounded-error quantum algorithms, is subsumed and improved by Theorem 1.1 since the
latter has a running time of O(t · log t) whereas the result from [39] has no bound on the running time

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 15

http://dx.doi.org/10.4086/toc

DIETER VAN MELKEBEEK AND THOMAS WATSON

of the simulation. It remains an open problem to match the space bound of [39] for the simulation of
unbounded-error quantum computations using our technique.

3.3 Proof of Theorem 3.2

Our simulation relies on a description of the computation in terms of mixed states and uses classical
algorithms to guess paths down a computation tree. An equivalent alternative formulation involves
describing the computation in terms of density operators and using classical algorithms to guess paths
through products of matrices. We elaborate on the latter in the remarks in Section 3.4.

Suppose language L is solvable by a quantum algorithm M running in time t ≥ logn and space
s≥ logn with error ε < 1/2 having q quantum work tape heads, and such that each number in A(M) has
a (t ′,s′)-generator. Let

p≥ log2

(
5t ·2q+1

1/2− ε

)
be an integer function. Basically, this bound on the precision parameter p comes from the need to
approximate M’s acceptance probability within 1/2− ε , which necessitates approximating the unitary
operator applied in each computation step within (1/2− ε)/5t, which necessitates approximating the
numbers in A(M) within (1/2− ε)/(5t ·2q+1).

We fix an arbitrary input x, and for simplicity of notation we let p = p(|x|) and assume that on
input x, M uses exactly s qubits and always applies exactly t quantum gates, exactly m of which are
measurements, regardless of the observed sequence of measurement outcomes. This can be achieved by
padding the computation with gates that do not affect the accept/reject decision of M. Note that whether a
particular run of M on input x accepts is uniquely determined by the observed sequence of measurement
outcomes µ ∈ {0,1}m. This reflects our model’s obliviousness to the quantum computation path but
nonobliviousness to the intermediate measurement outcomes.

In Section 3.3.1 we describe a certain tree representing the computation of M on input x, state a key
structural property of this tree, and give the final simulation. Then in Section 3.3.2 we prove the key
structural property.

3.3.1 Algorithm construction

PP can be characterized as the class of languages consisting of inputs for which the difference of two #P
functions exceeds a certain polynomial-time computable threshold. Thus, we would like to approximate
the acceptance probability of M on input x as the ratio of the difference of two #P functions over some
polynomial-time computable scaling factor. To facilitate the argument, we model the computation of
M on input x as a tree, analogous to the usual computation trees one associates with randomized or
nondeterministic computations. We would then like to approximate the final amplitude of a basis state
with a linear combination of #P functions, where each #P function counts the number of root-to-leaf
paths that lead to that basis state and have a particular path amplitude. (The coefficients in this linear
combination are the path amplitudes, which are the products of the transition amplitudes along the paths.)
To accomplish this, we discretize the elementary quantum operations using rational numbers, which are
obtained via the (t ′,s′)-generators. These rational numbers have a common denominator that can be

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 16

http://dx.doi.org/10.4086/toc

TIME-SPACE EFFICIENT SIMULATIONS OF QUANTUM COMPUTATIONS

factored out and absorbed into the scaling factor, leaving Gaussian integers (i. e., complex numbers with
integer real and imaginary parts), which can be expressed using #P functions.

We formally define the computation tree for our fixed input x as follows. It has depth t. Each level
τ = 0, . . . , t represents the state of the quantum tape after the τth gate is applied and before the (τ +1)st
gate is applied. Each node v has four labels:

• τ(v) ∈ {0, . . . , t}, representing the level of v,

• µ(v) ∈ {0,1}≤m, representing the sequence of measurement outcomes that leads to v,

• σ(v) ∈ {0,1}s, representing the computational basis state at v,

• α(v) ∈ {1, i,−1,−i}, representing the numerator of the amplitude of v.

Our construction of the tree will guarantee that the path amplitude associated with v is a fourth root
of unity divided by 2τ(v)p, which justifies the restriction on α(v) in the fourth bullet. Labels of nodes
across a given level need not be unique; if τ(v) = τ(u) and µ(v) = µ(u) and σ(v) = σ(u), then v and u
represent interference.

We now define the tree inductively as follows. The root node v, representing the initial state, has
τ(v) = 0, µ(v) = λ , σ(v) = 0s, and α(v) = 1. Now consider an arbitrary node v. If τ(v) = t then v is
a leaf. Otherwise, v has children that depend on the type and operands of the (τ(v)+1)st gate applied
given that µ(v) is observed (which will always be well-defined). There are three cases, corresponding to
the three types of gates M can use (library gates, measurement gates, and query gates).

• Suppose the gate is a unitary operator U from M’s library, applied to qubits j1, . . . , jq ∈ {1, . . . ,s}.
Let (

a0q +b0q i, . . . , a1q +b1q i
)T

denote the σ(v) j1,..., jq column of U in the computational basis. Then v has 2 ·2q groups of children,
corresponding to each of the real numbers that make up this column. The children corresponding
to a0q are as follows (the other groups are similar). There are r̂ identical children, where r̂ is the
number of accepting computation paths generated by the hypothesized (t ′,s′)-generator for |a0q |
on precision parameter p. Each of these children u satisfies τ(u) = τ(v)+1, µ(u) = µ(v), σ(u)
equals σ(v) with bits j1, . . . , jq set to 0, and α(u) = α(v) ·sgn(a0q). For the children corresponding
to b0q , we would set α(u) = α(v) · i · sgn(b0q).

• Suppose the gate is a single-qubit projective measurement of the jth qubit in the computational basis.
Then v has 2p identical children u, each with τ(u) = τ(v)+1, µ(u) = µ(v)σ(v) j, σ(u) = σ(v),
and α(u) = α(v).

• Suppose the gate is a quantum query gate, and suppose σ(v) and the operands of the query gate
are such that xi is to be XORed into the jth qubit. Then v has 2p identical children u, each
with τ(u) = τ(v)+ 1, µ(u) = µ(v), σ(u) equals σ(v) with σ(v) j replaced by σ(v) j ⊕ xi, and
α(u) = α(v).

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 17

http://dx.doi.org/10.4086/toc

DIETER VAN MELKEBEEK AND THOMAS WATSON

The reason the latter two cases use 2p children is so that every internal node has an implicit denominator
of 2p in the transition amplitude, which allows us to factor out this common denominator across each
level.

In order to describe how the computation tree reflects the evolution of the quantum tape, we introduce
the following notation.

• Vτ,µ,σ ,α = {v : τ(v) = τ, µ(v) = µ , σ(v) = σ , α(v) = α} ,

• Vτ,µ,σ =
⋃

α Vτ,µ,σ ,α ,

• Vτ,µ =
⋃

σ Vτ,µ,σ ,

• Vτ =
⋃

µ Vτ,µ .

Suppose we run M but do not renormalize state vectors after measurements. Then after τ gates have been
applied, we have a vector for each sequence of measurement outcomes µ that could have occurred during
the first τ steps. The nodes in Vτ,µ together with their amplitudes α(v)/2τ p approximately give the vector
for µ , since these are exactly the nodes whose computation paths are consistent with the measurement
outcomes µ1 · · ·µ|µ|. In other words, the vector for µ is approximately ∑v∈Vτ,µ

(
α(v)/2τ p

)∣∣σ(v)
〉

and
thus the squared 2-norm of the latter vector is approximately the probability of observing µ . This suggests
that at the end of the computation, when τ = t, the sum of these squared 2-norms over all µ causing M
to accept should approximately equal the probability M accepts. Lemma 3.4 below confirms this. Care
is needed in the formal proof, however, for two reasons. First, the approximations used to generate the
children of a node when a library gate is applied are not generally consistent with any unitary evolution.
Second, there can be exponentially many sequences µ that cause M to accept, and just summing simple
error estimates over all these sequences does not work since under our target efficiency parameters, we
cannot guarantee exponentially good approximations in the probabilities of observing every individual µ .
We handle this by instead arguing that in a certain sense, these probabilities are approximated well “on
average,” using the fact that the approximation errors are relative to the probability weights of the paths.
This is good enough for our purpose.

Lemma 3.4.∣∣∣∣∣Pr(M accepts)− 1
22t p ∑

µ∈{0,1}m

causing M
to accept

∑
σ∈{0,1}s

∑
α∈{1,i,−1,−i}

(∣∣Vt,µ,σ ,α

∣∣2− ∣∣Vt,µ,σ ,α

∣∣ · ∣∣Vt,µ,σ ,−α

∣∣)∣∣∣∣∣< 1
2
− ε .

We prove Lemma 3.4 in Section 3.3.2 below. With Lemma 3.4 in hand, we now show how to construct
a randomized algorithm N running in time O

(
t · t ′(p)

)
and space O

(
s+ log t + s′(p)

)
such that

• if Pr(M accepts)≥ 1− ε then Pr(N accepts)> 1/2, and

• if Pr(M accepts)≤ ε then Pr(N accepts)< 1/2.

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 18

http://dx.doi.org/10.4086/toc

TIME-SPACE EFFICIENT SIMULATIONS OF QUANTUM COMPUTATIONS

This suffices to prove Theorem 3.2.
We first construct a nondeterministic algorithm N′ taking as input a tuple (x,µ,σ ,α) where µ ∈

{0,1}m, σ ∈ {0,1}s, and α ∈ {1, i,−1,−i}, whose number of accepting computation paths satisfies
#N′ = |Vt,µ,σ ,α |. This is straightforward: have N′ nondeterministically guess a root-to-leaf path in the
computation tree. The only information about the current node v it needs to keep track of is σ(v) and α(v),
taking space O(s). It keeps a pointer into µ , taking space O(log t). It determines the correct sequence of
gates by simulating the classical part of M, taking O(t) time and O(s) space. When processing a library
gate, N′ nondeterministically guesses one of the 2 ·2q groups of children, then runs the appropriate (t ′,s′)-
generator on input p to nondeterministically pick one of the children in that group. When processing
a measurement gate, N′ checks that applying the measurement to the current σ(v) yields the next bit
of µ . It rejects if not and otherwise continues by using that bit of µ as the measurement outcome and
generating 2p nondeterministic branches. Processing a quantum query gate is trivial. When it reaches a
leaf v, N′ checks that σ(v) = σ and α(v) = α (it already knows that µ(v) = µ having made it this far)
and accepts if so and rejects otherwise. As constructed, N′ has the desired behavior, and it runs in time
O
(
t · t ′(p)

)
and space O

(
s+ log t + s′(p)

)
(with respect to n = |x|).

We next construct nondeterministic algorithms N+ and N− such that on input x,

#N+ = ∑
µ∈{0,1}m

causing M
to accept

∑
σ∈{0,1}s

∑
α∈{1,i,−1,−i}

∣∣Vt,µ,σ ,α

∣∣2

and
#N− = ∑

µ∈{0,1}m

causing M
to accept

∑
σ∈{0,1}s

∑
α∈{1,i,−1,−i}

∣∣Vt,µ,σ ,α

∣∣ · ∣∣Vt,µ,σ ,−α

∣∣ .
Since they are similar, we just describe N+.

By the closure of #P functions under multiplication and under uniform exponential sums, we can
generate the desired number of accepting computation paths by nondeterministically guessing µ ∈ {0,1}m,
σ ∈ {0,1}s, and α ∈ {1, i,−1,−i}, then running two independent copies of N′ on input (x,µ,σ ,α) and
accepting iff both accept and µ causes M to accept. (Since every accepting execution of N′ follows an
execution of M with measurement outcomes µ , we know at the end whether µ causes M to accept.)
However, this standard method runs in space O

(
t + s′(p)

)
due to the need to store µ of length m, which

could be as large as t. (Storing σ and α is not problematic.) We bring the space usage of N+ down to
O
(
s+ log t + s′(p)

)
as follows. We run the two copies of N′ in parallel, keeping them in sync so that they

access each bit of µ at the same time. (Note that since N+ can reject after seeing a single disagreement
with µ , the two copies being run will apply the same sequence of gates and thus access each bit of µ at
the same time.) It follows that N+ only needs to reference each bit of µ once. This implies that rather
than guessing and storing µ at the beginning, N+ can guess each bit of µ only when needed by the
two copies and overwrite the previous bit of µ . As constructed, N+ runs in time O

(
t · t ′(p)

)
and space

O
(
s+ log t + s′(p)

)
and generates the desired number of accepting computation paths.

By Lemma 3.4, ∣∣∣∣Pr(M accepts)− 1
22t p

(
#N+−#N−

)∣∣∣∣ < 1/2− ε .

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 19

http://dx.doi.org/10.4086/toc

DIETER VAN MELKEBEEK AND THOMAS WATSON

Thus,

• if Pr(M accepts)≥ 1− ε then #N+−#N− > 22t p−1, and

• if Pr(M accepts)≤ ε then #N+−#N− < 22t p−1.

We can now use a standard technique to obtain the final randomized simulation N. Since t and t ′(p) are
constructible, we can assume without loss of generality that N+ and N− are constructed so as to have
exactly 2g computation paths for some constructible function g≤ O

(
t · t ′(p)

)
. This allows us to compare

numbers of accepting paths to numbers of rejecting paths. By nondeterministically picking N+ or N− to
run, and flipping the answer if N− was chosen, we get

(
#N+−#N−

)
+2g accepting computation paths.

We can generate an additional 2g+1 dummy computation paths, exactly 2g +22t p−1 of which reject, to
shift the critical number of accepting paths to exactly half the total number of paths. This can be done
without dominating the time or space efficiency, by the constructibility condition.

As constructed, N runs in time O
(
t ·t ′(p)

)
and space O

(
s+ log t+s′(p)

)
and accepts x with probability

greater than 1/2 if x∈ L and with probability less than 1/2 if x 6∈ L. This finishes the proof of Theorem 3.2.

3.3.2 Postponing measurements

In this section we prove Lemma 3.4. We start by describing a framework for analyzing quantum
algorithms with intermediate measurements by implicitly postponing the measurements and tracking the
unitary evolution of the resulting purification. We stress that we are doing so for reasons of analysis only;
our actual simulations do not involve postponing measurements.

Recall that we are assuming for simplicity of notation that on our fixed input x, M uses exactly s
qubits and always applies exactly t quantum gates, exactly m of which are measurements, regardless of
the observed sequence of measurement outcomes. We conceptually postpone the measurements in the
computation by

(1) introducing m ancilla qubits initialized to all 0’s,

(2) replacing the ith measurement on each classical computation path by an operation that entangles
the ith ancilla qubit with the qubit being measured (by applying a CNOT to the ancilla qubit with
the measured qubit as the control), and

(3) measuring the m ancilla qubits at the end.

In the τth step of the simulation, we apply a unitary operator Uτ on a system of s+m qubits, where
Uτ acts independently on each of the subspaces corresponding to distinct sequences of measurement
outcomes that can be observed before time step τ . More precisely, consider the set of µ ∈ {0,1}≤m such
that given that µ is observed, the τth gate is applied after µ is observed but not after the (|µ|+ 1)st
measurement gate is applied. Let Uτ be the set of these µ such that the τ th gate is unitary, and let Mτ be
the set of these µ such that the τth gate is a measurement. For ν ∈ {0,1}m, let Pν denote the projection
on the state space of the ancilla qubits to the one-dimensional subspace spanned by |ν〉.

For µ ∈ Uτ , let Gτ,µ denote the unitary operator on the state space of s qubits induced by the τth
gate applied given that µ is observed. Then Uτ acts as Gτ,µ ⊗ I on the range of I⊗P

µ0m−|µ| . For each

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 20

http://dx.doi.org/10.4086/toc

TIME-SPACE EFFICIENT SIMULATIONS OF QUANTUM COMPUTATIONS

µ ∈Mτ , Uτ applies an entangling operator Eτ,µ that acts only on the range of I⊗
(
P

µ0m−|µ|+P
µ10m−1−|µ|

)
.

We arbitrarily set the behavior of Uτ on the remaining subspaces to the identity operator. Thus,

Uτ =

(
∑

µ∈Uτ

Gτ,µ ⊗P
µ0m−|µ|

)
+

(
∑

µ∈Mτ

Eτ,µ

)
+R ,

where R is a term that expresses the behavior on the remaining subspaces.
It is well-known, and can be verified from first principles, that the probability of observing any

sequence of measurement outcomes µ ∈ {0,1}m when M is run equals the probability of observing µ after
the evolution U =UtUt−1 · · ·U2U1 with all of the ancilla qubits initialized to 0. That is, Pr(µ observed) =∥∥(I⊗Pµ)U |0s+m〉

∥∥2. It follows that Pr(M accepts) =
∥∥PU |0s+m〉

∥∥2, where P denotes the sum of I⊗Pµ

over all µ causing M to accept.
Now for each µ ∈ Uτ , if Gτ,µ comes from a library gate then let Ĝτ,µ be an operator analogous to

Gτ,µ but where each real and imaginary part of the matrix in the computational basis is replaced by
a number with the same sign whose absolute value is r̂/2p, where r̂ is the value from the appropriate
(t ′,s′)-generator on precision parameter p. If Gτ,µ comes from a quantum query gate then let Ĝτ,µ = Gτ,µ .
Naturally, we define

Ûτ =

(
∑

µ∈Uτ

Ĝτ,µ ⊗P
µ0m−|µ|

)
+

(
∑

µ∈Mτ

Eτ,µ

)
+R

and Û = Ût · · ·Û1.
Lemma 3.4 now follows from the following two claims.3

Claim 3.5.
∣∣∣∥∥PÛ |0s+m〉

∥∥2−
∥∥PU |0s+m〉

∥∥2
∣∣∣ < 1/2− ε .

Claim 3.6.∥∥PÛ |0s+m〉
∥∥2

=
1

22t p ∑
µ∈{0,1}m

causing M
to accept

∑
σ∈{0,1}s

∑
α∈{1,i,−1,−i}

(∣∣Vt,µ,σ ,α

∣∣2− ∣∣Vt,µ,σ ,α

∣∣ · ∣∣Vt,µ,σ ,−α

∣∣) .

Proof of Claim 3.5. Suppose Vτ,µ is the q-qubit unitary operator corresponding to Gτ,µ (assuming the
latter represents the application of a library gate), and let V̂τ,µ be similar but where the real and imaginary
parts are replaced by their approximations. Since each of these approximations is within 1/2p of the
correct value, we have

∥∥V̂τ,µ −Vτ,µ

∥∥ ≤ 2q+1/2p ≤ (1/2− ε)/5t. Tensoring with the identity does not
change the operator norm of an operator, so we also have

∥∥Ĝτ,µ −Gτ,µ

∥∥≤ (1/2− ε)/5t. We claim that

3A result very similar to Claim 3.5 is needed in Section 4.1 for deriving Theorem 4.2 from Theorem 4.3. Specifically, if
each Ĝτ,µ is unitary and approximates Gτ,µ within ε ′ then in the statement of Claim 3.5 we can replace < 1/2− ε by ≤ 2tε ′,

and we have that
∥∥PÛ |0s+m〉

∥∥2 equals the probability of acceptance of the modified quantum computation. Further, if the
approximations are only up to global phase factors, then we can change the definition of Û to counteract the global phase, and
then

∥∥PÛ |0s+m〉
∥∥2 still equals the probability of acceptance.

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 21

http://dx.doi.org/10.4086/toc

DIETER VAN MELKEBEEK AND THOMAS WATSON

this implies that
∥∥Ûτ −Uτ

∥∥≤ (1/2−ε)/5t for all τ ; this holds since for every unit vector |ψ〉 in the state
space of s+m qubits, we have

∥∥∥(Ûτ −Uτ

)
|ψ〉
∥∥∥2

=

∥∥∥∥∥ ∑
µ∈Uτ

((
Ĝτ,µ ⊗P

µ0m−|µ|
)
−
(
Gτ,µ ⊗P

µ0m−|µ|
))
|ψ〉

∥∥∥∥∥
2

= ∑
µ∈Uτ

∥∥∥((Ĝτ,µ −Gτ,µ

)
⊗ I
)(

I⊗P
µ0m−|µ|

)
|ψ〉
∥∥∥2

≤ ∑
µ∈Uτ

(1/2− ε

5t

)2∥∥∥(I⊗P
µ0m−|µ|

)
|ψ〉
∥∥∥2

≤
(1/2− ε

5t

)2
.

Now we claim that for all τ = 0, . . . , t,

∥∥∥Ûτ · · ·Û1−Uτ · · ·U1

∥∥∥ ≤ (
1+

1/2− ε

5t

)τ

−1 .

We prove this by induction on τ . The base case τ = 0 is trivial since Û0 · · ·Û1 =U0 · · ·U1 = I. For the
induction step, we assume the claim holds for τ − 1 and prove it for τ . By the triangle inequality, it
suffices to show the following two inequalities:

∥∥∥Ûτ

(
Ûτ−1 · · ·Û1

)
−Uτ

(
Ûτ−1 · · ·Û1

)∥∥∥ ≤ 1/2− ε

5t
·
(

1+
1/2− ε

5t

)τ−1

, (3.1)∥∥∥Uτ

(
Ûτ−1 · · ·Û1

)
−Uτ

(
Uτ−1 · · ·U1

)∥∥∥ ≤ (
1+

1/2− ε

5t

)τ−1

−1 . (3.2)

Inequality (3.1) follows from the facts that

∥∥Ûτ −Uτ

∥∥ ≤ 1/2− ε

5t

and ∥∥Ûτ−1 · · ·Û1
∥∥ ≤ (

1+
1/2− ε

5t

)τ−1

(the latter following from the induction hypothesis and the fact that ‖Uτ−1 · · ·U1‖= 1). Inequality (3.2)
follows from the induction hypothesis and the fact that ‖Uτ‖= 1. This finishes the induction. It follows
that

∥∥Û−U
∥∥ ≤ (

1+
1/2− ε

5t

)t

−1 ≤ e(1/2−ε)/5−1 ≤
(

1+2 · 1/2− ε

5

)
−1 = 0.4

(
1/2− ε

)
.

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 22

http://dx.doi.org/10.4086/toc

TIME-SPACE EFFICIENT SIMULATIONS OF QUANTUM COMPUTATIONS

Finally, defining |∆〉=
(
Û−U

)
|0s+m〉, we have∣∣∣∥∥PÛ |0s+m〉

∥∥2−
∥∥PU |0s+m〉

∥∥2
∣∣∣ = ∣∣∣〈0s+m|Û†P|∆〉+ 〈∆|PU |0s+m〉

∣∣∣
≤
∥∥Û†∥∥ ·∥∥|∆〉∥∥+∥∥|∆〉∥∥

≤
(

1+0.4
(
1/2− ε

))
·0.4

(
1/2− ε

)
+0.4

(
1/2− ε

)
< 1/2− ε ,

where the third line follows by the facts that
∥∥Û−U

∥∥≤ 0.4(1/2− ε) and ‖U‖= 1. This completes the
proof of Claim 3.5.

Proof of Claim 3.6. For each node v, define∣∣ψ(v)
〉
=

α(v)
2τ(v)p

∣∣σ(v)µ(v)0m−|µ(v)|〉 .
Note that

∣∣ψ(v)
〉

is the basis state of v multiplied by its amplitude, with the ancilla qubits set to indicate
the sequence of measurement outcomes that leads to v. It follows from the definition of the tree that for
each internal node v,

Ûτ(v)+1
∣∣ψ(v)

〉
= ∑

children u of v

∣∣ψ(u)
〉
.

Thus since
∣∣ψ(v)

〉
= |0s+m〉 when v is the root, by induction on τ we have

Ûτ · · ·Û1|0s+m〉 = ∑
v∈Vτ

∣∣ψ(v)
〉

for all τ = 0, . . . , t. It follows that

∥∥PÛ |0s+m〉
∥∥2

=

∥∥∥∥∥P ∑
v∈Vt

∣∣ψ(v)
〉∥∥∥∥∥

2

=

∥∥∥∥∥ ∑
µ∈{0,1}m

causing M
to accept

∑
v∈Vt,µ

∣∣ψ(v)
〉∥∥∥∥∥

2

= ∑
µ∈{0,1}m

causing M
to accept

∑
σ∈{0,1}s

∥∥∥∥∥ ∑
v∈Vt,µ,σ

∣∣ψ(v)
〉∥∥∥∥∥

2

= ∑
µ∈{0,1}m

causing M
to accept

∑
σ∈{0,1}s

∣∣∣∣∣ ∑
v∈Vt,µ,σ

α(v)
2t p

∣∣∣∣∣
2

=
1

22t p ∑
µ∈{0,1}m

causing M
to accept

∑
σ∈{0,1}s

∑
α∈{1,i,−1,−i}

(∣∣Vt,µ,σ ,α

∣∣2− ∣∣Vt,µ,σ ,α

∣∣ · ∣∣Vt,µ,σ ,−α

∣∣).
This completes the proof of Claim 3.6 and the proof of Lemma 3.4.

3.4 Remarks

We make two remarks concerning our main randomized simulation, Theorem 3.2.

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 23

http://dx.doi.org/10.4086/toc

DIETER VAN MELKEBEEK AND THOMAS WATSON

Handling nonobliviousness to the quantum computation path We believe that nothing prevents
our proof of Theorem 3.2 from carrying over to any reasonable model of quantum computation that is
nonoblivious to the quantum computation path. In this case, the sequence of gates leading to a node v
in the computation tree does not depend only on µ(v), but this does not present a significant problem
for our proof. However, the proof becomes more technical due to the (limited) interactions between the
local operations applied on different quantum computation paths. These complications arise for the same
reason as the unintuitive conditions on the transition function in the models from [8] and [38]. We feel
that working out the details of such a result would not be well-motivated since the currently envisioned
realizations of quantum computers do not support such nonoblivious behavior.

Alternate proof using the density operator formalism The proof of Theorem 3.2 can be rephrased
in the language of density operators. We now briefly sketch how to do this. After each time step,
the mixed state of the quantum tape can be expressed as an operator on s qubits, called the density
operator, which captures all the observable information. The density operator of the initial state is
|0s〉〈0s|. Suppose the first operation applied is a unitary gate, and let U denote the corresponding unitary
operator on the entire state space. Then the density operator after step 1 is U |0s〉〈0s|U†. Suppose the
next operation applied is a measurement, and let M0 and M1 be the corresponding projection operators.
Then the density operator after step 2 is ∑µ∈{0,1}MµU |0s〉〈0s|U†M†

µ . Now the next operation can
depend on the measurement outcome µ; suppose it is unitary U0 if µ = 0 or unitary U1 if µ = 1. Since
M0U |0s〉〈0s|U†M†

0 represents the unnormalized state given µ = 0, the subsequent unnormalized state is
represented by U0M0U |0s〉〈0s|U†M†

0U†
0 , and similarly for µ = 1. Thus the density operator after step 3 is

∑µ∈{0,1}UµMµU |0s〉〈0s|U†M†
µU†

µ . Continuing in this way, we find that the mixed state at the end is

∑
µ∈{0,1}m

Lt,µ · · ·L1,µ |0s〉〈0s|L†
1,µ · · ·L

†
t,µ

where Lτ,µ are some linear operators. The probability of acceptance is the trace of

∑
µ∈{0,1}m

causing M
to accept

Lt,µ · · ·L1,µ |0s〉〈0s|L†
1,µ · · ·L

†
t,µ .

If we approximate each real and imaginary part of each Lτ,µ as a rational number with denominator
2p (using the (t ′,s′)-generators) then the trace of the resulting sum is approximately the probability of
acceptance. (This can be proved by translating to the postponed measurement framework and using the
argument from Claim 3.5. We do not know of a clean way to directly phrase this argument in terms
of density operators.) Factoring out 1/22t p yields a sum of products of Gaussian integer matrices, and
we just need to express the trace of this sum using a difference of #P functions. This involves guessing
σ ∈ {0,1}s (summing over the diagonal entries), guessing a µ that leads to acceptance, and guessing a
path through the matrix product to generate the (σ ,σ) entry of the product (and guessing whether to
take the real or imaginary part of each entry). One of the two #P functions sums the positive terms in
the expression, while the other sums the negative terms. The key for preserving the space bound is to
guess the path starting in the middle and simultaneously guessing two paths outward. That way, each

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 24

http://dx.doi.org/10.4086/toc

TIME-SPACE EFFICIENT SIMULATIONS OF QUANTUM COMPUTATIONS

bit of µ only needs to be accessed once and can be guessed at that time and later overwritten. The
unbounded-error randomized simulation then follows as before by combining the two #P functions and
generating dummy computation paths to shift the critical fraction of paths to exactly 1/2.

4 Quantum simulation

In this section we prove Theorem 1.2. In Section 4.1 we state our simulation result in full generality and
discuss its relationship to previous work. In Section 4.2 we describe the intuition and new ideas behind
the main component of the proof (Theorem 4.3 below), and then in Section 4.3 we give the full proof of
Theorem 4.3.

4.1 Overview

We start with our precise definition of a universal set.4

Definition 4.1. A finite set S of unitary quantum gates is universal if there exists a q0 such that for all
q ≥ q0 the following holds. For every q-qubit unitary operator U and every ε > 0 there exist q-qubit
unitary operators U1, . . . ,Uk, each of which is a gate from S applied to some of the q qubits, and there
exists a global phase factor eiθ , such that

∥∥U− eiθUk · · ·U1
∥∥≤ ε .

There is a long line of research on constructing universal sets [12, 15, 6, 27, 13, 7, 25, 9, 34].5

Examples of universal sets include the Toffoli gate together with the Hadamard gate [34], and the CNOT
gate together with any single-qubit unitary gate whose square does not preserve the computational
basis [34].

Our quantum simulation result basically states that every quantum algorithm can be simulated with
only a small overhead in time and space by another quantum algorithm whose library is an arbitrary
universal set S, provided S is closed under adjoint. Recall that in our terminology, the library gates of a
quantum algorithm all act on q qubits, where q is the number of work tape heads. Since S may contain
gates acting on different numbers of qubits, when we say the library is S we allow tensoring with the
identity so that all gates act on the same number of qubits (we also allow rearranging the qubits, so a gate
from S can be applied to any subset of the quantum work tape head locations). We now state the general
form of our simulation result.

Theorem 4.2. For every universal set S with parameter q0 such that S is closed under adjoint and
each number in A(S) has a (t ′,s′)-approximator, the following holds. Suppose language L is solvable
by a quantum algorithm M running in time t and space s with error ε < 1/2 having q ≥ q0 quantum
work tape heads, and such that each number in A(M) has a (t ′,s′)-approximator. Then L is also
solvable by a quantum algorithm with library S running in time O

(
t ·polylog(1/ε ′)+ t ′(p)

)
and space

O
(
s+ log(1/ε ′)+ s′(p)

)
with error ε +2tε ′, where ε ′ is any function constructible by a deterministic

algorithm with the latter time and space bounds, and p is a certain function in Θq
(
log(1/ε ′)

)
.

4Some notions of universality allow ancilla qubits; however, as far as we know, all such results have been subsumed by
results that do not need ancilla qubits.

5For these results, the global phase factor eiθ does not need to depend on ε , but this does not matter for our purposes.

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 25

http://dx.doi.org/10.4086/toc

DIETER VAN MELKEBEEK AND THOMAS WATSON

The function p in Theorem 4.2 represents the precision parameter on which the simulation invokes
the approximators for the numbers in A(M)∪A(S). The parameters t, s, ε , ε ′, and p are all functions of
the input length n, and the big O’s are with respect to n→ ∞. The bulk of the proof of Theorem 4.2 is the
following result. Let U(d) denote the set of unitary operators on Cd .

Theorem 4.3 (Space-efficient version of the Solovay-Kitaev theorem). For each constant integer d ≥ 2
the following holds. Suppose S ⊆ U(d) is a finite set closed under adjoint such that for every U ∈
U(d) and every ε > 0 there exists a sequence U1, . . . ,Uk ∈ S and a global phase factor eiθ such that∥∥U− eiθUk · · ·U1

∥∥≤ ε . Then for every U ∈ U(d) and every ε > 0 there exists a sequence U1, . . . ,Uk ∈ S
with k ≤ polylog(1/ε) and a global phase factor eiθ such that

∥∥U− eiθUk · · ·U1
∥∥≤ ε . Moreover, such

a sequence can be computed by a deterministic algorithm running in time polylog(1/ε) and space
O(log(1/ε)), given as input ε and matrices that are at distance at most f (ε) from U and the gates in S,
where f is a certain polynomial depending only on d.

Note that the algorithm in Theorem 4.3 runs in space O(log(1/ε)) while outputting a list of
polylog(1/ε) gates. This means that it outputs the labels of the gates on the fly, in the order they
are to be applied, and the output list does not count toward the space bound. Also, the algorithm needs
some hardcoded information about S, and the constant factors in the efficiency parameters depend on
S. Finally, the values of k and eiθ in the conclusion of the theorem are not generally the same as in the
hypothesis for the same U and ε , and the global phase factor eiθ in the conclusion may depend on ε even
if the global phase factors in the hypothesis do not.

In Section 4.2 we explain the intuition and new ideas behind Theorem 4.3, and then in Section 4.3
we give the formal proof. We do not attempt to optimize the degree of the polylog in the running time;
this can likely be done with a complicated analysis and rearrangement of the ingredients in the proof.
However, we do mention a few simple optimizations in Section 4.3.4.

Proof of Theorem 4.2. Assume without loss of generality that every operator in S acts on q qubits. First,
compute ε ′ and p =

⌈
log2

(
2q+1/ f (ε ′)

)⌉
where f is the polynomial from Theorem 4.3 for d = 2q. Then

run the (t ′,s′)-approximators on precision parameter p to obtain matrices that approximate the gates
in S and in M’s library within f (ε ′). Then start simulating M, and every time it applies a library gate
U , run the algorithm from Theorem 4.3 with ε ′ as the ε-parameter to find a sequence of gates from S
whose product ε ′-approximates U up to a global phase factor, and apply those gates instead. Note that
the algorithm from Theorem 4.3 needs to be rerun at every step since we do not have enough space to
store the approximating sequences for M’s library gates. The time and space complexities of the new
algorithm are immediate. We just need to verify that the probability any input is accepted changes by at
most 2tε ′; we omit the argument as a nearly identical one appears in Section 3.3.2. (The differences are
that in that proof, nonunitary approximations are allowed and global phase factors do not appear in the
approximations.)

Proof of Theorem 1.2. Let ε = 1/3 and let ε ′ ≈ 1/20t be a constructible function. Apply Theorem 4.2,
using the fact that each number in A(M)∪A(S) has a

(
poly(p),O(p)

)
-approximator (as noted in the

proof of Theorem 1.1). Then use amplification to bring the error down to 1/3.

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 26

http://dx.doi.org/10.4086/toc

TIME-SPACE EFFICIENT SIMULATIONS OF QUANTUM COMPUTATIONS

Theorem 4.3 is a strengthening of the well-known Solovay-Kitaev theorem [25]. The latter theorem
states that there exists an appropriate sequence of gates as in Theorem 4.3.6 Moreover, the proof gives
a deterministic algorithm for computing such a sequence in time and space polylog(1/ε), in a highly
idealized model of computation in which exact numerical calculations (including matrix diagonalization,
which is impossible using just +,−,×,÷ and kth roots) can be performed at unit cost each (see [11],
Appendix 3 of [31], or Section 8.3 of [26]). However, we cannot do exact calculations, since the entries of
our matrices may require infinitely many bits to specify and we are charged for the space to store numbers
and the time to compute with them. The complexity of the algorithm in a standard finite-precision model
has not been studied in the literature, other than some remarks in [26, page 76]. A careful analysis shows
that approximating the matrix entries of U and the gates in S with precision parameter p = polylog(1/ε)
yields sufficiently good approximations to all matrices involved, leading to an algorithm running in
time and space polylog(1/ε). The difficulty in Theorem 4.3 is in getting the space complexity down
to O(log(1/ε)), which also necessitates getting the precision parameter down to O(log(1/ε)), while
maintaining a polylog(1/ε) running time.

Other results on quantum compiling are known. While in the standard proof of the Solovay-Kitaev
theorem [11, 31] the length of the approximating sequence of gates is O(log3.97(1/ε)), Section 8.3 of [26]
presents a slightly more technical proof that gets the sequence length down to O(log3+δ (1/ε)) for any
constant δ > 0. Section 13.7 of [26] describes a different approach that gets the sequence length down to
O
(
log2(1/ε) log log(1/ε)

)
but does not work for every universal set. Harrow, Recht, and Chuang [22]

present yet a different approach that gets the sequence length down to O(log(1/ε)) (which is optimal up
to constant factors) but does not work for every universal set and is not even constructive.

4.2 Intuition

We now give the intuition behind the proof of Theorem 4.3, focusing on the new ideas. In Section 4.2.1
we give a quick overview of the standard Solovay-Kitaev algorithm [11]. In the subsequent sections we
motivate and develop our improvement by discussing three primary issues.

4.2.1 Overview of the standard algorithm

The standard version of the algorithm takes as input a unitary operator U and an integer ` ≥ 0 and
returns a sequence of gates from S whose product Ũ ε`-approximates7 U , where ε0 > 0 is a certain
small constant and ε` ≤ O(ε1.5

`−1)� ε`−1 for ` > 0. We suppress the dependence of Ũ on ` in order
to declutter the notation later on. The algorithm is recursive in `. For the base case ` = 0, by our
assumption on S we can use brute force to find an ε0-approximation using a constant number of gates
from S. The induction consists of a bootstrapping argument: given the ability to make recursive calls that
find ε`−1-approximations using gates from S, we would like to find ε`-approximations using gates from S.
The key that makes this possible is the following remarkable fact, whose proof is inspired by Lie theory.

6There is actually a minor but slightly nontrivial argument needed to obtain the Solovay-Kitaev theorem for arbitrary
universal sets in U(d), which we could not find mentioned in the literature but seems to have been implicitly assumed in the
literature. This point is discussed in Section 4.3.

7We ignore the issue of global phase factors throughout Section 4.2; this issue is treated carefully in Section 4.3.

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 27

http://dx.doi.org/10.4086/toc

DIETER VAN MELKEBEEK AND THOMAS WATSON

Fact 4.4 (Key Fact, Informal Version). If U is ε`−1-close to the identity I, then it is possible to find
unitary operators V and W such that for any unitary operators Ṽ and W̃ that ε`−1-approximate V and W
respectively, the group commutator ṼW̃Ṽ †W̃ † ε`-approximates U.

This can be turned into a recursive algorithm as follows. First we must “translate” U to the neighbor-
hood of I in order to apply the key fact. To do this, we make a recursive call on U to obtain a sequence of
gates from S whose product ε`−1-approximates U . We define ϒ =U and let ϒ̃ denote this product. The
notation U and Ũ is always with respect to our arbitrary level `, while ϒ and ϒ̃ are with respect to level
`−1. The purpose of this nonstandard notation is to simplify the notation later on. Now Uϒ̃† is ε`−1-close
to I, so we can apply the key fact to it. What good is this? Note that since U =U ϒ̃†ϒ̃, we have that for
any unitary operator that ε`-approximates U ϒ̃†, multiplying it on the right by ϒ̃ yields a unitary operator
that ε`-approximates U . Thus, if we can find a sequence of gates whose product ε`-approximates U ϒ̃†,
then we can append it to the sequence we have for ϒ̃ to get a sequence whose product ε`-approximates
U .8 The key fact helps us achieve the former. Specifically, we compute V and W from U ϒ̃†, and then
we recursively find a sequence of gates from S whose product Ṽ is ε`−1-close to V , and we recursively
find a similar sequence for W . The key fact tells us that ṼW̃Ṽ †W̃ † is ε`-close to U ϒ̃†. Thus we can just
string together four sequences of gates from S whose products equal Ṽ , W̃ , Ṽ †, and W̃ † to get a sequence
whose product ε`-approximates U ϒ̃†. We already have sequences for Ṽ and W̃ , by the recursive calls. To
obtain a sequence whose product equals Ṽ †, just take the sequence for Ṽ , reverse the order of the gates,
and invert each gate. (This is where we need the assumption that S is closed under adjoint.) A sequence
for W̃ † is obtained similarly. Declaring Ũ = ṼW̃Ṽ †W̃ †ϒ̃, we have that Ũ is ε`-close to U , and we have
found a sequence whose product equals Ũ .

If we seek an ε-approximation to U , we can just pick L to be the smallest value such that εL ≤ ε and
run the algorithm on U and `= L. In particular, L = Θ(log log(1/ε)) levels of recursion suffice. Since
the base case always produces a sequence whose length is at most a constant, say m, and at each level the
maximum length of the approximating sequence gets multiplied by 5, a sequence produced at the `th level
has length at most 5`m. Using L = Θ(log log(1/ε)) levels, the sequence has length at most polylog(1/ε).
We model the execution of the algorithm as a recursion tree where the leaves are at level 0, the root is at
level L, and each internal node (representing a call for some U) has three children representing the calls
for ϒ, V , and W .

The algorithm sketched above runs in time polylog(1/ε), in a highly idealized model of computation
in which exact numerical calculations can be performed at unit cost each. However, we need to work in
the standard model of computation, in which we are charged for the space to store numbers and the time
to compute with them. By some technical analysis and tweaking of numerical methods, it is possible to
make the above algorithm work in the standard model, running in time polylog(1/ε). Our improvement
(Theorem 4.3) is an algorithm that runs in space O(log(1/ε)) while still running in time polylog(1/ε).
We now discuss the obstacles to obtaining such a space-efficient algorithm and how we overcome them.

4.2.2 The numerical precision problem

Since the operators we deal with may require infinitely many bits to specify, we need to work with
finite-precision approximations to them. That is, if the “intended” operator is U , we instead take as input

8Note that the sequence for ϒ̃ comes first in the sequence order, since ϒ̃ is the right multiplicand of
(
U ϒ̃†)ϒ̃.

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 28

http://dx.doi.org/10.4086/toc

TIME-SPACE EFFICIENT SIMULATIONS OF QUANTUM COMPUTATIONS

a (not necessarily unitary) matrix Û guaranteed to be close to U and for which we have an exact binary
representation.9 At level `, when we are seeking an ε`-approximation to U , we assume that Û is within
some δ` of U . Thus, given Û , our goal is to output a sequence of gates from S whose product Ũ is ε`-close
to U . Since we only know Û and not U , we must ensure Ũ is ε`-close to every unitary operator U that
is within δ` of Û . Note that this requires δ` ≤ ε` since otherwise there might not exist an operator that
simultaneously ε`-approximates every U that is within δ` of Û . However, δ` may need to be much smaller
than ε`. Let us consider how small δ` needs to be. For the base case `= 0, constant δ0-approximations
suffice. Suppose that δ` ≥Ω(δ α

`−1) suffices for the reduction from level ` to level `−1, where α is some
constant. Since ε` ≤ O(ε1.5

`−1), the above observation shows that we must have α ≥ 1.5. Since the root
of the recursion tree is at level L, the output is a sequence of gates whose product is only guaranteed to
approximate U within

εL =
(
Θ(ε0)

)1.5L

,

while we need an approximation to the intended input U within

δL =
(
Θ(δ0)

)αL

.

Hence, log(1/ε)≤ log(1/εL)≤ O(1.5L), while just writing down a sufficiently good approximation to
the intended input takes

Ω(log(1/δL))≥Ω(αL)≥Ω
(
loglog1.5 α(1/εL)

)
≥Ω

(
loglog1.5 α(1/ε)

)
bits. As we mention below, it turns out that we cannot avoid writing down and storing such approximations.
Thus, to have any hope of getting a logarithmic space algorithm, we must achieve α = 1.5. We now
explain how to do this and why it is not trivial.

Consider an arbitrary node at level ` > 0 in the recursion tree, and pretend for simplicity that the
intended input U is already ε`−1-close to I, so we can apply the key fact directly to U without having to
deal with the translation step.

The proof of the key fact in the infinite-precision model prescribes a “desired” input/output relationship
from the intended input U of this node to the intended inputs V,W of its two children. In our finite-
precision model we need to replace this relationship by a different input/output relationship, such that
when the input matrix has a finite binary representation, the two output matrices have finite binary
representations computable by a time-space efficient algorithm. The goal is that when the input Û is
within δ` of the intended input U , the outputs V̂ ,Ŵ are within δ`−1 of the intended outputs V,W . In
each step of the computation the absolute error may increase. This is partly inherent in the conditioning
(e. g., square-rooting a number can square-root the error in the worst case), and partly because of the
time-space efficiency requirement (e. g., roundoff errors, or the use of iterative rather than direct methods).
Unfortunately, these errors seem to prevent us from accomplishing the above goal10 with α = 1.5.

9It turns out that using floating point numbers does not asymptotically improve the efficiency since it is always the case that
a constant fraction of the bits past the radix point are potentially nonzero. Thus we always work with fixed point numbers and
with absolute errors.

10See Section 4.3.2 for more details. In fact, the square roots inherent in the proof of the key fact seem to impose α ≥ 2,
though it is conceivable α could be reduced somewhat by case analysis.

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 29

http://dx.doi.org/10.4086/toc

DIETER VAN MELKEBEEK AND THOMAS WATSON

To circumvent the problem, we revise our goal for the new input/output relationship: when the input
Û is within δ` of the intended input U , we now only require that the outputs V̂ ,Ŵ are within δ`−1 of some
V,W which are the “desired” outputs corresponding to some unitary operator U ′ that is within O(ε`) of
U .11 This is good enough, because then U ′ is O(ε`−1)-close to I, and the key fact shows that if Ṽ ,W̃ are
unitary operators that ε`−1-approximate V,W , then ṼW̃Ṽ †W̃ † is O(ε`)-close to U ′ and hence O(ε`)-close
to U . This gives us what we wanted, using a small adjustment in parameters to absorb the constant factor.

We now sketch how we accomplish the revised goal with α = 1.5 in the case where d = 2. For that
we need to take a closer look at the proof of the key fact. It uses a correspondence between unitary
operators and skew-hermitian operators via the logarithm/exponential maps.12 Given U , it first converts
to the skew-hermitian domain, then finds the desired operators in this domain, then converts back to the
unitary domain to get V,W . Let F be the skew-hermitian matrix logU . Given Û within δ` of U , it turns
out we can obtain a matrix F̂ that is within O(δ`) of F in time polylog(1/ε) and space O(log(1/ε)) (see
Section 4.3.2). As we mentioned in the above discussion of the original goal, this is not close enough for
computing the desired V,W corresponding to U within δ`−1 when α = 1.5. The key for achieving the
revised goal is the following fact.

Every skew-hermitian operator corresponds exactly to some unitary operator, and nearby
skew-hermitian operators correspond to nearby unitary operators.

For α = 1.5 we can ensure that F̂ is within O(ε`) of F . Thus, given F̂ , if we could find some (finite-
precision) skew-hermitian matrix F ′ within O(ε`) of F̂ and hence within O(ε`) of F , then the correspond-
ing unitary operator U ′ = expF ′ would be within O(ε`) of U , and we could proceed to compute the
desired V,W corresponding to U ′ within δ`−1 since we would have an exact representation of F ′. To find
F ′, we can take F̂ and perturb it in a natural way to make it skew-hermitian; then using the fact that F̂ is
O(ε`)-close to some skew-hermitian operator (namely F), it can be shown that F ′ is within O(ε`) of F̂ .
This is the basic idea for accomplishing the revised goal in the case where d = 2. A technical problem
arises when d > 2; the workaround uses an idea due to Nagy [30] and is presented in Section 4.3.5.

In the end, we set δ` = ε`/c for some large constant c. Since all the matrices at level ` only need to
approximate their intended operators within O(δ`), we can always assume they only take up O(log(1/δ`))
space. At the top level, this comes out to O(log(1/ε)) space, which is necessary but not sufficient for
achieving the desired space bound. Since the constants in the big O’s do not depend on `, the space for
storing a matrix goes down by a constant factor at each level as we go down the recursion tree. Thus,
if we can get by with storing only a constant number of matrices at each node along the current path to
the root, then the total space usage will be a geometric sum dominated by O(log(1/δL))≤ O(log(1/ε)),
giving us the desired space bound. We follow this general approach, but there are a number of obstacles
to getting it to work.

4.2.3 Reducing the space in the overall architecture

Let us quickly rehash the notation for the algorithm as described so far. For our arbitrary node at level
`, we have U,Û ,Ũ which denote the intended input, the input, and the product of the sequence of gates

11This is related to the notion of backward stability from numerical analysis.
12Recall that a linear operator F on Cd is skew-hermitian iff F† =−F , or equivalently, F is unitarily diagonalizable with

imaginary eigenvalues.

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 30

http://dx.doi.org/10.4086/toc

TIME-SPACE EFFICIENT SIMULATIONS OF QUANTUM COMPUTATIONS

output by our algorithm, which ε`-approximates U . For the first child, we have ϒ, ϒ̂, ϒ̃ where ϒ =U , ϒ̂

is a truncation of Û , and ϒ̃ ε`−1-approximates ϒ. For the remaining two children, we have V,V̂ ,Ṽ and

W,Ŵ ,W̃ . However, in order to compute V̂ and Ŵ , we need to somehow obtain a matrix Û ϒ̃† that is
sufficiently close to U ϒ̃†. We discuss this issue in Section 4.2.4 below; for now, let us assume that such a
matrix is magically provided to us.

In this section we address the following issue. The algorithm as described in Section 4.2.1 recursively
finds the sequences corresponding to Ṽ and W̃ , and it stores these two sequences since they both need to
be used twice in the returned sequence (once as is, and once in reverse order with each gate inverted).
However, we do not have enough space to store the sequences.

The standard approach for avoiding the space overhead of storing intermediate results in a computation
is to recompute the intermediate results whenever they are needed. However, in our case this would
increase the running time to at least 2Ω(L2) (since the sequence for a node at level ` has length 2Ω(`) and
thus the degree of the node would increase to at least 2Ω(`)), which would defeat our goal of maintaining
a polylog(1/ε) running time.13

We must ask each recursive call to output its sequence on the fly, in the order the gates are to be
applied, rather than returning the sequence for us to manipulate. To generate the sequence corresponding
to Ũ = ṼW̃Ṽ †W̃ †ϒ̃, we can make a call on ϒ̂ to generate the prefix corresponding to ϒ̃, and calls on Ŵ
then V̂ to generate the suffix corresponding to ṼW̃ . We just need to worry about generating the middle
part corresponding to Ṽ †W̃ †.14 We augment the procedure with an additional input indicating whether the
sequence corresponding to Ũ should be output “forward” or “inverse” (the latter meaning that the order
is reversed and each gate is inverted). Then to obtain the sequence corresponding to Ũ , we can make a
forward call on ϒ̂, then inverse calls on Ŵ then V̂ , then forward calls on Ŵ then V̂ . Unless, of course, the
current call is in inverse mode, in which case we should make inverse calls on V̂ then Ŵ , then forward
calls on V̂ then Ŵ , then an inverse call on ϒ̂.

Now, the notation Ũ refers to the product of the gates that would be output if the call is in forward
mode.

4.2.4 Obtaining the matrix Û ϒ̃†

If we had a matrix ̂̃ϒ within δ` of ϒ̃, then we could multiply Û with ̂̃ϒ†
to obtain a matrix within 3δ` of

U ϒ̃†, which is good enough for the computation of V̂ ,Ŵ . But how do we obtain ̂̃ϒ? Note that ϒ̃ can be
represented exactly as a sequence of gates from S. However, what we need is (good approximations to)
the entries of the matrix ϒ̃, which we must obtain by multiplying (good approximations to) the matrices
corresponding to the gates in the sequence that comprises ϒ̃.

13One might naively think that this technique could still be interesting since it might lead to a o(log(1/ε)) space algorithm
(if we do not care about the running time) by avoiding even writing down the intermediate matrices. However, this does not

work: it turns out that because of the need to recompute Û ϒ̃†, just the recordkeeping for all the backtracking would already take
ω(log(1/ε)) space.

14Note that we cannot just make calls on Ŵ † then V̂ †, since a call on Ŵ † would output some sequence whose product
approximates W † but is not guaranteed to be the inverse of W̃ , as required for the mathematics behind the algorithm to go
through.

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 31

http://dx.doi.org/10.4086/toc

DIETER VAN MELKEBEEK AND THOMAS WATSON

A relatively simple way of obtaining ̂̃ϒ is as follows (see Section 4.3.4 for some more streamlined
ways). Before making the five regular recursive calls, we make a forward call on ϒ̂ but use a flag to
indicate that no actual output should be produced; the algorithm should just “go through the motions” for

the purpose of finding ̂̃ϒ. Now at a leaf, there may be several calls on the path to the root that indicated
that no output should be produced. If there are any such calls, then the leaf should not produce any actual
output.

If we hypothetically made a call on ϒ̂ in forward mode with the output flag on, there would be
5`−1 leaves in ϒ’s subtree that produced actual output (i. e., were called with the output flag on). Let
ϒ1, . . . ,ϒ5`−1 and ϒ̂1, . . . , ϒ̂5`−1 denote the intended and actual inputs to these leaves. Then

ϒ̃ = ϒ̃
mode5`−1

5`−1 · · · ϒ̃mode1
1 ,

where ϒ̃i denotes the product of the sequence of gates that would be output at ϒi’s leaf if it were
hypothetically called in forward mode with the output flag on (so ϒ̃i ε0-approximates ϒi), and modei

represents either † (if the leaf is in inverse mode) or nothing (if the leaf is in forward mode).

The basic idea is to obtain ̂̃ϒ by multiplying together ̂̃ϒ mode5`−1

5`−1 · · · ̂̃ϒmode1

1 , where ̂̃ϒi approximates
ϒ̃i within roughly δ`/5`−1 and takes space O(log(5`−1/δ`)) ≤ O(log(1/δ`)). However, doing this
multiplication exactly would take space O(5`−1 · log(1/δ`)), which is too large since ` is superconstant in
general. To keep the space down, we truncate the current matrix to O(log(1/δ`)) bits after each matrix is
multiplied on. See Section 4.3.3 for the calculation proving that the approximation error does not grow

too large. When we are at ϒi’s node, we need to immediately multiply ̂̃ϒmodei

i onto the current matrix
(then truncate), and therefore the current matrix needs to have been passed down through the recursion to
ϒi’s node.15 The updated matrix must be returned up so that it can then be passed down to ϒi+1’s node.

For any given leaf with input Û , there may be many nodes along the path to the root that are “interested”
in Ũ , at different levels of precision (namely, those nodes that are in the midst of their dummy call, and
such that if that dummy call were hypothetically made with the output flag on, then the current leaf would
also have the output flag on). We must pass around a list of matrices, one for each such node. The space
taken up by this list is a geometric sum dominated by O(log(1/ε)), and we only need to maintain one
copy of the list throughout the algorithm (since when the list is passed to a recursive call, the caller does
not need to retain a copy). Thus the overall space bound is O(log(1/ε)).

4.3 Proof of Theorem 4.3

The essence of Theorem 4.3 is extracted in the following theorem. Let SU(d) denote the set of unitary
operators on Cd with determinant 1.

Theorem 4.5. For each constant integer d ≥ 2 there exists an ε∗ > 0 such that the following holds.
Suppose m is a positive integer and S ⊆ SU(d) is a finite set closed under adjoint such that for every
U ∈ SU(d) there exists a sequence U1, . . . ,Uk ∈ S with k ≤ m such that

∥∥U −Uk · · ·U1
∥∥≤ ε∗. Then for

every U ∈ SU(d) and every ε > 0 there exists a sequence U1, . . . ,Uk ∈ S with k≤ polylog(1/ε) such that

15Alternatively, we could keep it in U’s “stack frame” and directly modify it there.

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 32

http://dx.doi.org/10.4086/toc

TIME-SPACE EFFICIENT SIMULATIONS OF QUANTUM COMPUTATIONS∥∥U−Uk · · ·U1
∥∥≤ ε . Moreover, such a sequence can be computed by a deterministic algorithm running

in time polylog(1/ε) and space O(log(1/ε)), given as input ε and matrices that are at distance at most
f (ε) from U and the gates in S, where f is a certain polynomial depending only on d.

The difference between Theorem 4.3 and Theorem 4.5 is that in Theorem 4.5, everything takes place in
SU(d) and global phase shifts are not allowed in the approximation guarantees; also, S is only required to
be able to approximate an arbitrary U within some fixed ε∗, but the length of the approximating sequence
must have an upper bound that is independent of U . Also, the f -polynomials in the two theorems are not
the same. In both theorems, the finite-precision input matrices are required to approximate the intended
unitary operators without global phase factors.

As we show in Section 4.3.1, Theorem 4.3 follows from Theorem 4.5. The main part of the reduction
deals with the problem that in Theorem 4.3, S can approximate every U up to global phase factors,
whereas in Theorem 4.5, global phase factors are not allowed. Resolving this issue is easy but not trivial.
Although this part of the reduction appears to be necessary for obtaining the Solovay-Kitaev theorem for
arbitrary universal sets, we could not find it in the literature. The remaining part of the reduction is just a
technical argument showing that given a finite-precision approximation to an operator in U(d), we can
efficiently obtain finite-precision approximations to each global phase shift of the operator that lies in
SU(d). This involves using Taylor series and taking some care to ensure the logarithmic space bound.

In Section 4.3.2 and Section 4.3.3 we give the proof of Theorem 4.5 for the case d = 2, to avoid some
technical issues that crop up in the general case. Although we do not attempt to optimize the degree
of the polylog in the running time, we mention a few ways to reduce this degree in Section 4.3.4. In
Section 4.3.5 we explain how to modify the proof to work for arbitrary d.

We break up the proof of Theorem 4.5 for d = 2 into two parts. The first part, given in Section 4.3.2,
is a lemma that forms the kernel of the algorithm. This lemma basically says that given any U ∈
SU(2) such that ‖U − I‖ ≤ ε , we can produce V,W ∈ SU(2) such that for every Ṽ ,W̃ ∈ SU(2) with∥∥V −Ṽ

∥∥, ∥∥W −W̃
∥∥≤ ε , we have

∥∥U−ṼW̃Ṽ †W̃ †
∥∥≤ O(ε1.5). Moreover, we can do it with essentially

the minimum possible precision—less precision than a naive analysis of the standard Solovay-Kitaev
argument would yield. The second part, given in Section 4.3.3, constructs the full algorithm using this
key tool as the building block.

Before diving into the formal proof, we discuss two simple but relevant points regarding numerical
calculations. First, note that whenever a real number is guaranteed to be δ -close to some intended real
number, we can assume it has at most

⌈
log2(1/δ)

⌉
+1 bits past the radix point, since with a slight change

in parameters, we can guarantee that it is δ/2-close to the intended number, and then truncate it while
increasing the distance by at most δ/2. A similar statement holds for matrices. Thus, throughout the
whole proof, we tacitly assume that every matrix that is δ -close to some intended matrix only takes up
space O(log(1/δ)). Second, we need to do arithmetic calculations on real numbers represented exactly in
binary. We use the fact that addition, subtraction, and multiplication of such numbers can be performed by
deterministic algorithms running in polynomial time and linear space, and that division and square roots
can be computed up to p bits past the radix point by deterministic algorithms running in time polynomial
in the input length and p, and space linear in the input length and p.

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 33

http://dx.doi.org/10.4086/toc

DIETER VAN MELKEBEEK AND THOMAS WATSON

4.3.1 Reduction from Theorem 4.3 to Theorem 4.5

Proof of Theorem 4.3. Fix a constant integer d ≥ 2 and let ε∗ be as in Theorem 4.5. Let f ′ denote the
f -polynomial from Theorem 4.5. Henceforth, all constants may depend on d.

Let S be as in Theorem 4.3, and obtain S′ for use in Theorem 4.5 as follows: for each gate U ∈ S,
include in S′ all global phase shifts of U that lie in SU(d). (Note that there are exactly d such shifts,
namely those corresponding to the dth roots of the complex conjugate of the determinant of U , so S′ is
finite.) Since S is closed under adjoint and the global phase shifts of U that lie in SU(d) are the adjoints
of the global phase shifts of U† that lie in SU(d), it follows that S′ is closed under adjoint.

There exists a finite set T ⊆ U(d) such that every operator in SU(d) is at distance at most ε∗/2c from
some operator in T , where c is a constant to be specified later. By our assumption on S, each operator in
T is at distance at most ε∗/2c from a global phase shift of the product of some sequence of gates in S.
Let m be the maximum length of this sequence over all operators in T . Then by the triangle inequality,
for every U ∈ SU(d) there is a sequence U1, . . . ,Uk ∈ S′ with k ≤ m such that

∥∥U− eiθUk · · ·U1
∥∥≤ ε∗/c

for some global phase factor eiθ .
But there is a problem with the latter approximation: to use Theorem 4.5, we need θ = 0. We can

handle this as follows. It can be verified that
∥∥U − eiθUk · · ·U1

∥∥ ≤ ε∗/c implies that the determinant
(eiθ)d of eiθUk · · ·U1 satisfies

∣∣(eiθ)d−1
∣∣≤ O(ε∗/c) and thus θ ∈ 2π j/d±O(ε∗/c) mod 2π , for some

j ∈ {0, . . . ,d−1}. Therefore,
∥∥eiθUk · · ·U1− e2πi j/dUk · · ·U1

∥∥≤ O(ε∗/c), and by the triangle inequality
we have

∥∥U − e2πi j/dUk · · ·U1
∥∥ ≤ O(ε∗/c). Note that the right side of the latter inequality is at most

ε∗ provided c is large enough. If j = 0 then this is just what we want. If j 6= 0, then we can turn
e2πi j/dUk · · ·U1 into a product of gates from S′ by multiplying say U1 by e−2πi j/d , which keeps it in S′

since in the definition of S′ we included all appropriate phase shifts of each gate in S.
Now that we have m and S′ as required for Theorem 4.5, consider any U ∈ U(d) and let eiφU be any

global phase shift that lies in SU(d). Now provided we can obtain f ′(ε)-approximations to eiφU and the
gates in S′ in time polylog(1/ε) and space O(log(1/ε)) from f (ε)-approximations to U and the gates in
S, we can run the algorithm from Theorem 4.5 to find a sequence U1, . . . ,Uk ∈ S′ with k ≤ polylog(1/ε)
such that

∥∥eiφU−Uk · · ·U1
∥∥≤ ε in time polylog(1/ε) and space O(log(1/ε)). Since each Ui is a global

phase shift of a gate in S, we can output the labels of the gates in S corresponding to U1, . . . ,Uk, and then
some global phase shift of the resulting product will be at distance at most ε from U .

Thus all we need to do is show that, given a matrix Û such that
∥∥Û−U

∥∥≤ f (ε) for some (unknown)
U ∈ U(d), we can efficiently compute matrices Û (1), . . . ,Û (d) such that for each global phase shift eiθU
that lies in SU(d) there is a j such that

∥∥Û (j)−eiθU
∥∥≤ f ′(ε), where f is a certain polynomial (depending

on f ′).
Note that each of the real numbers comprising Û can be assumed to have only O(log(1/ε)) bits. The

first step is to exactly compute det
(
Û
)
. This number is within poly(ε) of det(U), for an arbitrarily high

degree polynomial, provided f (ε) is small enough. The next step is to approximate the polar angle of
det(U) using either the arcsin function or the arccos function (depending on whether the real or imaginary
part of det

(
Û
)

is smaller in absolute value, to ensure fast convergence of the Taylor series). Computing
the Taylor series to O(log(1/ε)) terms ensures that the contribution of the Taylor series truncation to the
total absolute error is poly(ε). There is another poly(ε) contribution to the total error coming from the
error in the input approximation. However, we cannot exactly evaluate the first O(log(1/ε)) terms on the

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 34

http://dx.doi.org/10.4086/toc

TIME-SPACE EFFICIENT SIMULATIONS OF QUANTUM COMPUTATIONS

approximate input for two reasons: raising an O(log(1/ε))-bit number to the power O(log(1/ε)) would
take space O(log2(1/ε)), and the coefficients of the Taylor series involve division by numbers that are
not powers of 2. The former issue can be solved by truncating to O(log(1/ε)) bits after multiplying on
each copy of the number; this contributes poly(ε) to the total error. The latter issue can be solved by just
doing division to O(log(1/ε)) bits; this also contributes poly(ε) to the total error.

Now that we have a poly(ε)-approximation to the angle of det(U), we can approximately divide by
−d to get a poly(ε)-approximation to the angle of one of the correct phase shifts. The other angles can
be approximately obtained by adding multiples of 2π/d. To get poly(ε)-approximations to the actual
phase shifts, approximately convert these angles to the corresponding complex numbers on the unit circle
and multiply Û by the resulting numbers. This finishes the proof.

4.3.2 The kernel (d = 2)

Our goal in this section is to prove the following result.

Lemma 4.6. There exist constants b, c, and ε0 > 0 such that the following holds. There is a deterministic
algorithm that, given parameter 0 < ε ≤ ε0, runs in time polylog(1/ε) and space O(log(1/ε)) and
achieves the following. The input is a matrix Û promised to have the following property: there exists
a U ∈ SU(2) such that

∥∥Û−U
∥∥≤ 3bε1.5/c and ‖U− I‖ ≤ ε . The output is two matrices V̂ ,Ŵ having

the following property: there exist V,W ∈ SU(2) such that
∥∥V̂ −V

∥∥, ∥∥Ŵ −W
∥∥ ≤ ε/c and for every

Ṽ ,W̃ ∈ SU(2) with
∥∥V −Ṽ

∥∥, ∥∥W −W̃
∥∥≤ ε , we have

∥∥U−ṼW̃Ṽ †W̃ †
∥∥≤ bε1.5.

We first give some setup for the proof. Recall that SU(d) denotes the set of unitary operators on Cd

with determinant 1 under multiplication, and let su(d) denote the set of skew-hermitian operators on Cd

with trace 0 under addition. The identity in SU(d) is I, and the identity in su(d) is 0. There is a bijection
between U ∈ SU(d) with ‖U − I‖ < 2 and F ∈ su(d) with ‖F − 0‖ < π , given by the logarithm map
ln : SU(d)→ su(d) and the exponential map exp : su(d)→ SU(d). Throughout this section, we always
assume that operators in SU(d) are at distance < 2 from I and that operators in su(d) are at distance < π

from 0, so that we may move freely between these two domains. In the SU(d) domain we make use of the
group commutator, defined as [V,W]gp =VWV †W †; note that [V,W]gp ∈ SU(d) if V,W ∈ SU(d). In the
su(d) domain we make use of the commutator, defined as [G,H] = GH−HG; note that [G,H] ∈ su(d)
if G,H ∈ su(d). We also need the following facts relating distances in the two domains.

Fact 4.7. If U1,U2 ∈ SU(d) with corresponding F1,F2 ∈ su(d) are such that ‖F1−F2‖ ≤ δ , then ‖U1−
U2‖ ≤ O(δ).

Fact 4.8. If U ∈ SU(d) with corresponding F ∈ su(d) is such that ‖U− I‖ ≤ δ , then ‖F−0‖ ≤ O(δ).

Fact 4.7 follows from Corollary 6.2.32 in [24], which states that for all d×d complex matrices A and
E,
∥∥exp(A+E)− exp(A)

∥∥≤ ‖E‖e‖E‖+‖A‖. Fact 4.8 is a partial converse to Fact 4.7 in the case U2 = I.
Actually, the more precise relation ‖U− I‖= 2sin

(1
2‖F−0‖

)
holds, but Fact 4.8 as stated is all we need.

Proof of Lemma 4.6. We leave b and c free for now and decide how to set them later. We just let ε0 > 0
be small enough to make all the big O’s and little o’s in the argument work. Throughout this section,
constants hidden in big O’s may depend on b, c, and d (though it turns out the form of the dependence

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 35

http://dx.doi.org/10.4086/toc

DIETER VAN MELKEBEEK AND THOMAS WATSON

on b and c matters). Significant portions of the proof work for arbitrary d ≥ 2 (and are used for the
generalization to d > 2 described in Section 4.3.5), so we present those portions for general d. Let ε , Û ,
and U be as in the statement of Lemma 4.6.

The standard proof of the kernel lemma in the general Solovay-Kitaev theorem uses the following
three structural results.

Fact 4.9. If U ∈ SU(d) with corresponding F ∈ su(d) is such that ‖U− I‖ ≤ δ , then there exist V,W ∈
SU(d) with corresponding G,H ∈ su(d) such that F = [G,H] and ‖V − I‖, ‖W − I‖ ≤ O(δ 0.5).

Fact 4.10. If U,V,W ∈ SU(d) with corresponding F,G,H ∈ su(d) are such that F = [G,H] and ‖V −
I‖, ‖W − I‖ ≤ δ , then

∥∥U− [V,W]gp
∥∥≤ O(δ 3).

Fact 4.11. If V,W,Ṽ ,W̃ ∈ SU(d) are such that ‖V − I‖, ‖W − I‖ ≤ δ and
∥∥V −Ṽ

∥∥, ∥∥W −W̃
∥∥≤ γ , then∥∥∥[V,W]gp−

[
Ṽ ,W̃

]
gp

∥∥∥≤ O(δγ + γ
2) .

Proofs of Fact 4.9 can be found in [11, 26]. Fact 4.10 follows from basic results in Lie theory,16 or
just using the infinite series for matrix exponentiation. A proof of Fact 4.11 can be found in [11]. The
existence of V,W as in Lemma 4.6 follows from these three facts. Specifically, let V,W ∈ SU(d) be as
guaranteed by Fact 4.9 (with δ = ε). Then for every Ṽ ,W̃ ∈ SU(d) with

∥∥V − Ṽ
∥∥, ∥∥W −W̃

∥∥≤ ε , we
have∥∥∥U− [Ṽ ,W̃

]
gp

∥∥∥ ≤ ∥∥U− [V,W]gp
∥∥+∥∥∥[V,W]gp−

[
Ṽ ,W̃

]
gp

∥∥∥ ≤ O(ε1.5)+O(ε1.5) ≤ O(ε1.5)

by Fact 4.10 (with δ = Θ(ε0.5)) and Fact 4.11 (with δ = Θ(ε0.5) and γ = ε).
Fact 4.9 is the only step that needs to be turned into an algorithm. That is, given an approximation to

some U ∈ SU(d) such that ‖U− I‖ ≤ ε , we would like to compute approximations to some V,W ∈ SU(d)
such that F = [G,H] and ‖V − I‖, ‖W − I‖ ≤ O(ε0.5), where F,G,H ∈ su(d) correspond to U,V,W .
However, it turns out that this is a bit too ambitious of a goal: we only have an approximation to U within
roughly ε1.5, which is not good enough to be able to find approximations to some correct V,W within
roughly ε , due to loss in precision in the numerical calculations.17 Instead, we shoot for the following
revised goal: to find good enough approximations to some V,W such that ‖V − I‖, ‖W− I‖ ≤O(ε0.5) and
[G,H] = F ′ where ‖F−F ′‖ ≤ O(ε1.5). This is sufficient because then by Fact 4.7, ‖U−U ′‖ ≤ O(ε1.5)
(where U ′ ∈ SU(d) corresponds to F ′) and so for every Ṽ ,W̃ ∈ SU(d) with

∥∥V −Ṽ
∥∥, ∥∥W −W̃

∥∥≤ ε , we
have ∥∥∥U− [Ṽ ,W̃

]
gp

∥∥∥ ≤ ‖U−U ′‖+
∥∥∥U ′− [Ṽ ,W̃

]
gp

∥∥∥ ≤ O(ε1.5)+O(ε1.5) ≤ O(ε1.5)

by Fact 4.10 and Fact 4.11.
To achieve this revised goal, we follow the natural approach, which is to attempt to compute F ′ from

U , then G,H from F ′, then V,W from G,H. For the second step, of course, we need to know a very

16The commutator is the bracket for the Lie algebra su(d) of the Lie group SU(d).
17It turns out we need to ensure that the product of ‖G−0‖ and ‖H−0‖ is roughly ‖F−0‖ while keeping these two quantities
≤ O(ε0.5), so the algorithm must do something tantamount to computing a square root, which could cause the absolute error to
get almost square rooted in the worst case.

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 36

http://dx.doi.org/10.4086/toc

TIME-SPACE EFFICIENT SIMULATIONS OF QUANTUM COMPUTATIONS

accurate approximation to F ′ (this is the whole reason for introducing F ′: we do not have a good enough
approximation to F). In fact, in the first step we shall compute a suitable F ′ exactly. Formally, here are
the three steps.

(1) Given Û such that
∥∥Û−U

∥∥≤ 3bε1.5/c for some U ∈ SU(d) with ‖U− I‖≤ ε , compute F ′ ∈ su(d)
exactly such that ‖F−F ′‖ ≤ O(ε1.5), where F ∈ su(d) corresponds to U .

(2) Given F ′ ∈ su(2) such that ‖F ′−0‖ ≤ O(ε), compute Ĝ, Ĥ such that
∥∥Ĝ−G

∥∥, ∥∥Ĥ−H
∥∥≤ o(ε)

for some G,H ∈ su(2) with F ′ = [G,H] and ‖G−0‖, ‖H−0‖ ≤ O(ε0.5).

(3) Given Ĝ, Ĥ such that
∥∥Ĝ−G

∥∥, ∥∥Ĥ−H
∥∥≤ o(ε) for some G,H ∈ su(d) with ‖G−0‖, ‖H−0‖ ≤

O(ε0.5), compute V̂ ,Ŵ such that
∥∥V̂ −V

∥∥, ∥∥Ŵ −W
∥∥≤ ε/c, where V,W ∈ SU(d) correspond to

G,H.

We have restricted to d = 2 in step (2) because this is the only part that does not work for d > 2 within
the desired space bound. We can stitch these three steps together to accomplish the revised goal (from
the previous paragraph) as follows. To connect step (1) to step (2), note that ‖F ′− 0‖ ≤ O(ε) since
by Fact 4.8, ‖F −0‖ ≤ O(ε). Also note that ‖V − I‖, ‖W − I‖ ≤ O(ε0.5) by Fact 4.7. Thus, as in the
previous paragraph, we conclude that for every Ṽ ,W̃ ∈ SU(d) with

∥∥V −Ṽ
∥∥, ∥∥W −W̃

∥∥≤ ε , we have∥∥∥U− [Ṽ ,W̃
]

gp

∥∥∥ ≤ O(ε1.5) .

It turns out that the constant in this big O is a1b/c+a2 for some constants a1,a2 (which may depend on
d). We can make this quantity at most b by setting b = a2 +1 and c = a1b. This gives us what we want,
provided each of the three steps runs in time polylog(1/ε) and space O(log(1/ε)).

We first describe step (3), since it is the simplest. We just compute V̂ = I + Ĝ+ Ĝ2/2 and Ŵ =
I + Ĥ + Ĥ2/2. Using the Taylor series for the exponential it can be verified that∥∥V̂ −V

∥∥ ≤ ∥∥V̂ − (I +G+G2/2)
∥∥+∥∥(I +G+G2/2)−V

∥∥ ≤ o(ε)+O(ε1.5) ≤ ε/c ,

and similarly for W . This takes care of step (3).
We now describe step (1). First compute F̂ = Û− I. Using the Taylor series for the exponential it can

be verified that∥∥F̂−F
∥∥ ≤ ∥∥F̂− (U− I)

∥∥+∥∥(U− I)−F
∥∥ ≤ O(ε1.5)+O(ε2) ≤ O(ε1.5) .

If F̂ ∈ su(d) then we can take F ′ = F̂ and be done. Otherwise, we obtain F ′ ∈ su(d) from F̂ as follows.
To make it skew-hermitian, we set the real parts of the diagonal entries to 0, and forget the entries below
the diagonal and replace them with the negative complex conjugates of the corresponding entries above
the diagonal. Then, to make it have trace 0, we replace an arbitrary diagonal entry with the negative sum
of the other diagonal entries. Using the facts that F ∈ su(d) and

∥∥F̂−F
∥∥≤ O(ε1.5), it can be verified

that
∥∥F̂−F ′

∥∥≤ O(ε1.5) and thus ‖F−F ′‖ ≤ O(ε1.5). This takes care of step (1).
Finally, we describe step (2). This is the only part where we must restrict our attention to d = 2. When

d > 2, we do not know how to do this within the target space efficiency, due to significant roundoff errors
resulting from divisions in the standard matrix diagonalization algorithms (but there is a workaround,

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 37

http://dx.doi.org/10.4086/toc

DIETER VAN MELKEBEEK AND THOMAS WATSON

which we discuss in Section 4.3.5). When d = 2, a single step of the Jacobi eigenvalue algorithm [20]
can be used to diagonalize F ′, and then an algorithm meeting our efficiency constraints can be gleaned
from the proof in [11] of Fact 4.9 (taking some care to avoid significant roundoff errors). Rather than
give more details about this approach, we describe a more direct and elegant approach using so-called
Pauli vectors (based on the proof of the Solovay-Kitaev theorem for d = 2 in [31]).

Let f ′ = (f ′X , f ′Y , f ′Z) ∈ R3 be such that
(
0,− i

2 f ′X ,− i
2 f ′Y ,− i

2 f ′Z
)

are the coordinates of F ′ in the basis
of Pauli matrices I,X ,Y,Z (note that since F ′ ∈ su(2), the I-coordinate must be 0 and the others must be
imaginary). Then f ′ is called the Pauli vector of F ′ (or of U ′). For all G,H ∈ su(2), the Pauli vector of
[G,H] is the cross product of the Pauli vectors of G and H (see Appendix 3 of [31]).

The Euclidean distance between Pauli vectors is within constant factors of the distance between the
associated operators in su(2). Thus ‖ f ′‖ ≤ O(ε), and we seek Pauli vectors g,h ∈ R3 (associated with
some G,H ∈ su(2)) such that g×h = f ′ and ‖g‖, ‖h‖ ≤O(ε0.5). Further, given F ′ we can compute f ′ by
a simple change of basis, and given vectors ĝ, ĥ ∈ R3 such that

∥∥ĝ−g
∥∥, ∥∥ĥ−h

∥∥≤ o(ε), we can do the
reverse change of basis to obtain matrices Ĝ, Ĥ such that

∥∥Ĝ−G
∥∥, ∥∥Ĥ−H

∥∥≤ o(ε).18 Thus, the bottom
line is the following: given f ′ ∈ R3 we wish to compute ĝ, ĥ ∈ R3 such that

∥∥ĝ−g
∥∥, ∥∥ĥ−h

∥∥≤ o(ε) for
some g,h ∈ R3 such that f ′,g,h are mutually perpendicular and ‖g‖, ‖h‖= ‖ f ′‖0.5.

If f ′ = (0,0,0) then this is trivial; otherwise, assume for example that either f ′Y 6= 0 or f ′Z 6= 0. Then
let g′ = f ′× (1,0,0) and h′ = f ′×g′, and note that we can compute g′ and h′ exactly. Define

g =
‖ f ′‖0.5 · g′

‖g′‖
and h =

‖ f ′‖0.5 · h′

‖h′‖
.

We show how to obtain an approximation ĝX to gX ; the cases of other coordinates, as well as h, are
symmetric. Note that

gX =
(
sgng′X

)
·
(
| f ′‖ · (g′X)2

‖g′‖2

)0.5

.

We can approximate this as follows. Compute (g′X)
2 and ‖g′‖2 exactly and take the quotient to within

ε3. Compute ‖ f ′‖2 exactly and take the square root to within ε3. Then take the product of these two
approximations; the result approximates ‖ f ′‖ · (g′X)2

/
‖g′‖2 within O(ε3). Then take the square root

within ε1.5, and finally multiply by sgng′X . The result is within
√

O(ε3)+ ε1.5 ≤ o(ε) of gX .
Analyzing the running time and space usage of the algorithm is straightforward. Each real number

the algorithm uses can be written with O(log(1/ε)) bits past the radix point, and so arithmetic operations
on these numbers can all be computed in time polylog(1/ε) and space O(log(1/ε)). This concludes the
proof of Lemma 4.6.

4.3.3 The full algorithm (d = 2)

Proof of Theorem 4.5 (d = 2). Let f (ε) be a certain polynomial, which we can take to be a sufficiently
high power of ε . Let b, c, and ε0 > 0 be the constants guaranteed by Lemma 4.6. We can assume
bε1.5

0 < ε0 < 1 and c≥ 4 since in Lemma 4.6 we can take ε0 arbitrarily small and c arbitrarily large. For
integers ` > 0 define ε` = bε1.5

`−1. Let ε∗ = ε0/c. Let S and m be as hypothesized in Theorem 4.5. Let

18It happens to be the case that Ĝ, Ĥ ∈ su(2) and ĝ, ĥ are their Pauli vectors, but this is immaterial for us.

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 38

http://dx.doi.org/10.4086/toc

TIME-SPACE EFFICIENT SIMULATIONS OF QUANTUM COMPUTATIONS

compute-VW(`,Û) be the algorithm from Lemma 4.6 that takes Û and outputs V̂ and Ŵ , using ε = ε`−1.
Then we claim that Algorithm 1 witnesses Theorem 4.5.

Algorithm 1: Algorithm for Theorem 4.5
Input: parameter ε > 0, matrices at distance at most f (ε) from U and the gates in S
Output: sequence U1, . . . ,Uk ∈ S such that

∥∥U−Uk · · ·U1
∥∥≤ ε

let L≥ 0 be the smallest integer such that εL ≤ ε

let matrix Û be such that
∥∥Û−U

∥∥≤ εL/c
compute-sequence(L, Û, forward, on)

In Algorithm 1, the procedure compute-sequence (which is given in a separate figure) takes an
integer `≥ 0 and a finite-precision matrix Û which is close to some “intended” operator U ∈ SU(2) and
finds a sequence of gates from S whose product Ũ satisfies

∥∥U−Ũ
∥∥≤ ε`. The procedure also takes as

input mode, indicating whether the sequence should be inverted (see Section 4.2.3), and flag, indicating
whether the procedure should output the sequence (see Section 4.2.4). It also takes finite-precision
matrices M̂L, . . . ,M̂`+1 where M̂ j is associated with the node at level j on the current path to the root in
the recursion tree. If the latter node is in the process of computing an approximation to its own ϒ̃, it
does so by multiplying together a sequence of matrices and truncating after each is multiplied on (see
Section 4.2.4), and M̂ j represents the current intermediate value in this computation. The input M̂ j can
be the symbol ?, which indicates that the node at level j is not “interested” in Ũ . The correctness of
Algorithm 1 follows immediately from the following inductive claim. We analyze the time and space
complexity after the proof of this claim.

Claim 4.12. For every integer 0≤ `≤ L and every matrix Û with
∥∥Û−U

∥∥≤ ε`/c for some U ∈ SU(2),
there exists a Ũ ∈ SU(2) with

∥∥U−Ũ
∥∥≤ ε` such that if we execute

compute-sequence(`, Û , mode, flag, M̂L, . . . , M̂`+1)

then the following three properties hold.

(i) If flag = off then no output is produced.

(ii) If flag = on then the output is a sequence of gates from S whose product equals Ũ (if mode =
forward) or Ũ† (if mode = inverse).

(iii) For each j ∈ {`+1, . . . ,L}, if M̂ j 6= ? and
∥∥M̂ j−M j

∥∥≤ δ for some M j ∈ SU(2) and some δ ≥ 0,
then the returned value of M̂ j satisfies M̂ j 6= ? and∥∥M̂ j−ŨM j

∥∥ ≤ (1+δ)
(
1+ ε j/(2c ·5 j−1)

)5`−1 (if mode = forward)

or ∥∥M̂ j−Ũ†M j
∥∥ ≤ (1+δ)

(
1+ ε j/(2c ·5 j−1)

)5`−1 (if mode = inverse) .

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 39

http://dx.doi.org/10.4086/toc

DIETER VAN MELKEBEEK AND THOMAS WATSON

Procedure compute-sequence(`, Û , mode, flag, M̂L, ..., M̂`+1)

Input: integer 0≤ `≤ L, matrix Û , mode ∈ {forward, inverse}, flag ∈ {on,off}, list of matrices
M̂L, . . . ,M̂`+1

Output: sequence of gates from S satisfying the properties in Claim 4.12
Returns: updated list of matrices M̂L, . . . ,M̂`+1 satisfying the properties in Claim 4.12

1 if `= 0 then
2 find U1, . . . ,Uk ∈ S with k ≤ m such that

∥∥Û−Ũ
∥∥≤ ε∗+2ε0/c where Ũ =Uk · · ·U1

3 if flag = on then
4 if mode = forward then output the labels of U1, . . . ,Uk

5 else if mode = inverse then output the labels of U†
k , . . . ,U

†
1

6 end
7 for j← 1 to L do
8 if M̂ j 6= ? then
9 compute ̂̃U such that

∥∥̂̃U−Ũ
∥∥≤ ε j/(4c ·5 j−1)

10 if mode = forward then M̂ j← ̂̃UM̂ j truncated to O(log(1/ε j)) bits

11 else if mode = inverse then M̂ j← ̂̃U†
M̂ j truncated to O(log(1/ε j)) bits

12 end
13 end
14 else if ` > 0 then
15 ϒ̂← Û truncated to O(log(1/ε`−1)) bits

16
(
?, . . . ,?, ̂̃ϒ)← compute-sequence(`−1, ϒ̂, forward, off, ?, . . . ,?, I)

17
(
V̂ ,Ŵ

)
← compute-VW(`, Û ̂̃ϒ†

)

18 if mode = forward then
19

(
M̂L, . . . ,M̂`+1,?

)
← compute-sequence(`−1, ϒ̂, forward, flag, M̂L, . . . ,M̂`+1,?)

20
(
M̂L, . . . ,M̂`+1,?

)
← compute-sequence(`−1, Ŵ , inverse, flag, M̂L, . . . ,M̂`+1,?)

21
(
M̂L, . . . ,M̂`+1,?

)
← compute-sequence(`−1, V̂ , inverse, flag, M̂L, . . . ,M̂`+1,?)

22
(
M̂L, . . . ,M̂`+1,?

)
← compute-sequence(`−1, Ŵ , forward, flag, M̂L, . . . ,M̂`+1,?)

23
(
M̂L, . . . ,M̂`+1,?

)
← compute-sequence(`−1, V̂ , forward, flag, M̂L, . . . ,M̂`+1,?)

24 else if mode = inverse then
25

(
M̂L, . . . ,M̂`+1,?

)
← compute-sequence(`−1, V̂ , inverse, flag, M̂L, . . . ,M̂`+1,?)

26
(
M̂L, . . . ,M̂`+1,?

)
← compute-sequence(`−1, Ŵ , inverse, flag, M̂L, . . . ,M̂`+1,?)

27
(
M̂L, . . . ,M̂`+1,?

)
← compute-sequence(`−1, V̂ , forward, flag, M̂L, . . . ,M̂`+1,?)

28
(
M̂L, . . . ,M̂`+1,?

)
← compute-sequence(`−1, Ŵ , forward, flag, M̂L, . . . ,M̂`+1,?)

29
(
M̂L, . . . ,M̂`+1,?

)
← compute-sequence(`−1, ϒ̂, inverse, flag, M̂L, . . . ,M̂`+1,?)

30 end
31 end
32 return M̂L, . . . ,M̂`+1

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 40

http://dx.doi.org/10.4086/toc

TIME-SPACE EFFICIENT SIMULATIONS OF QUANTUM COMPUTATIONS

Proof of Claim 4.12. We begin with the base case `= 0. We know there exists a sequence U1, . . . ,Uk ∈ S
with k≤m such that

∥∥Û−Uk · · ·U1
∥∥≤ ε∗+ε0/c since there exists a sequence U1, . . . ,Uk ∈ S with k≤m

such that
∥∥U −Uk · · ·U1

∥∥ ≤ ε∗ by our assumption on S. Thus by trying all possible sequences (using
the fact that S is finite) and considering a (hardcoded) finite approximation to each sequence within
a sufficiently small constant, the algorithm can find a sequence U1, . . . ,Uk ∈ S with k ≤ m such that∥∥Û−Uk · · ·U1

∥∥≤ ε∗+2ε0/c, and thus line 2 succeeds. By the triangle inequality, this sequence satisfies∥∥U−Uk · · ·U1
∥∥≤ ε∗+3ε0/c = 4ε0/c≤ ε0 since c≥ 4. Thus properties (i) and (ii) hold by lines 3-6.

To verify property (iii), fix j∈{1, . . . ,L} and assume M̂ j 6= ? and
∥∥M̂ j−M j

∥∥≤ δ for some M j ∈SU(2)
and some δ ≥ 0. Line 9 can be accomplished using the known matrices at distance at most f (ε) from the
gates in S. Suppose mode = forward (the case mode = inverse is similar). Let M̂′j denote the returned
value of M̂ j (computed in line 10). To show that

∥∥M̂′j−ŨM j
∥∥ ≤ (1+δ)

(
1+ ε j/(2c ·5 j−1)

)50

−1 ,

by the triangle inequality it suffices to show the following three inequalities:∥∥M̂′j−
̂̃UM̂ j

∥∥ ≤ (1+δ) · ε j/(4c ·5 j−1) , (4.1)∥∥̂̃UM̂ j−ŨM̂ j
∥∥ ≤ (1+δ) · ε j/(4c ·5 j−1) , (4.2)∥∥ŨM̂ j−ŨM j
∥∥ ≤ δ . (4.3)

To prove Inequality (4.1), note that truncating to O(log(1/ε j)) bits with a suitably large constant in the
big O ensures that the left side is actually at most ε j/(4c ·5 j−1). Inequality (4.2) follows from the facts
that ∥∥̂̃U−Ũ

∥∥≤ ε j/(4c ·5 j−1) and
∥∥M̂ j

∥∥≤ (1+δ)

(the latter following from the facts that ‖M j‖= 1 and
∥∥M̂ j−M j

∥∥≤ δ). Inequality (4.3) follows from the
facts that

∥∥Ũ∥∥= 1 and
∥∥M̂ j−M j

∥∥≤ δ .
We now carry out the induction step. Assuming the claim holds for `−1, we prove it for `. Property

(i) follows trivially from the induction hypothesis, since if flag = off then all recursive calls are made with
flag = off.

By choosing a suitably large constant in the big O on line 15, we have
∥∥ϒ̂−ϒ

∥∥ ≤ ε`−1/c where
ϒ = U . Let ϒ̃ ∈ SU(2) be the operator (depending only on ϒ̂ and `− 1) guaranteed by the induction

hypothesis. Then
∥∥ϒ− ϒ̃

∥∥≤ ε`−1, and ̂̃ϒ found on line 16 satisfies

∥∥̂̃ϒ− ϒ̃
∥∥ ≤ (

1+ ε`/(2c ·5`−1)
)5`−1

−1 ≤ eε`/2c−1 ≤ (1+ ε`/c)−1 = ε`/c

(using M̂` = M` = I and δ = 0). Also, no output is produced by the call on line 16.
It follows that

∥∥U ϒ̃†− I
∥∥≤ ε`−1 and

∥∥Û ̂̃ϒ†
−U ϒ̃

†∥∥ ≤ ∥∥Û ̂̃ϒ†
−Ûϒ̃

†∥∥+∥∥Û ϒ̃
†−Uϒ̃

†∥∥ ≤ ∥∥Û∥∥ ·∥∥̂̃ϒ†
− ϒ̃

†∥∥+∥∥Û−U
∥∥ ≤ 3ε`/c

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 41

http://dx.doi.org/10.4086/toc

DIETER VAN MELKEBEEK AND THOMAS WATSON

since
∥∥Û∥∥≤ ‖U‖+∥∥Û−U

∥∥≤ 1+ε`/c≤ 2 and
∥∥̂̃ϒ†
− ϒ̃†

∥∥≤ ε`/c and
∥∥Û−U

∥∥≤ ε`/c. By Lemma 4.6

(using Û ̂̃ϒ†
in place of Û , U ϒ̃† in place of U , and ε`−1 in place of ε), there exist V,W ∈ SU(2) such that∥∥V̂ −V

∥∥, ∥∥Ŵ −W
∥∥≤ ε`−1/c (where V̂ ,Ŵ are as computed on line 17) and for every Ṽ ,W̃ ∈ SU(2) with∥∥V −Ṽ

∥∥, ∥∥W −W̃
∥∥≤ ε`−1, we have ∥∥U ϒ̃

†−ṼW̃Ṽ †W̃ †∥∥ ≤ ε` .

In particular, this last inequality holds for the operators Ṽ ,W̃ whose existence is guaranteed by the
induction hypothesis applied to V̂ and Ŵ . Defining Ũ = ṼW̃Ṽ †W̃ †ϒ̃, we have

∥∥U−Ũ
∥∥≤ ε`. Property (ii)

is now immediate from lines 19-23 (if mode = forward) or 25-29 (if mode = inverse), using the induction
hypothesis applied to ϒ̂, V̂ , and Ŵ .

To verify property (iii), fix j ∈ {`+ 1, . . . ,L} and assume M̂ j 6= ? and
∥∥M̂ j −M j

∥∥ ≤ δ for some
M j ∈ SU(2) and some δ ≥ 0. Assume mode = forward (the case mode = inverse is similar). After line
19, by the induction hypothesis applied to ϒ̂, we have∥∥M̂ j− ϒ̃M j

∥∥ ≤ (1+δ)
(
1+ ε j/(2c ·5 j−1)

)5`−1

−1 .

After line 20, by the induction hypothesis applied to Ŵ (with ϒ̃M j in place of M j and

(1+δ)
(
1+ ε j/(2c ·5 j−1)

)5`−1

−1

in place of δ), we have∥∥M̂ j−W̃ †
ϒ̃M j

∥∥ ≤ (1+δ)
(
1+ ε j/(2c ·5 j−1)

)2·5`−1

−1 .

Continuing with lines 21, 22, and 23, we find that the returned value of M̂ j satisfies∥∥M̂ j−ṼW̃Ṽ †W̃ †
ϒ̃M j

∥∥ ≤ (1+δ)
(
1+ ε j/(2c ·5 j−1)

)5`−1 .

Since ṼW̃Ṽ †W̃ †ϒ̃ = Ũ , we are done. This concludes the proof of Claim 4.12.

We now analyze the time and space complexity of Algorithm 1. We start with the space complexity.
Each of the matrices the algorithm needs to deal with (the ones with a ̂) is associated with some

level. (For example, M̂ j is at level j, ̂̃U on line 9 is at level j, and for lines 15-17, Û and ̂̃ϒ are at level `
while ϒ̂, V̂ , and Ŵ are at level `−1.) Each matrix at level ` is poly(ε`)-close to some intended unitary
operator and thus only takes space O(log(1/ε`)). By Lemma 4.6, the call on line 17 only takes space
O(log(1/ε`−1))≤ O(log(1/ε)). Now we just need to verify that at every point during the execution of
the algorithm, each level ` has at most a constant number of matrices associated with it; then the total
space usage is ∑

L
`=0 O(log(1/ε`))≤ O(log(1/ε)).

Each node on the path to the root only needs to keep track of its input Û , as well as ̂̃ϒ, ϒ̂, V̂ , and Ŵ ,
so this is fine. Regarding the list of matrices M̂L, . . . ,M̂1, we only need to store one matrix M̂ j at a time,
for each j. This is because for the call on line 16, we can store M̂L, . . . ,M̂`+1 and these matrices are never

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 42

http://dx.doi.org/10.4086/toc

TIME-SPACE EFFICIENT SIMULATIONS OF QUANTUM COMPUTATIONS

touched during the execution of that call. For the calls on lines 19-29, we pass the list M̂L, . . . ,M̂`+1 to
each call and do not need to store the old values while the call executes.

It is straightforward to verify that the total running time is at most polylog(1/ε): the processing time
for each node in the recursion tree is polylog(1/ε), and the tree has depth O(log log(1/ε)) and each node
has six children, so the size of the recursion tree is polylog(1/ε). This finishes the proof of Theorem 4.5
for the case d = 2.

4.3.4 Optimizations

Although we did not focus on optimizing the degree of the polylog in the running time, we now
briefly mention a few simple optimizations. First, when procedure compute-sequence is called with
mode = forward, the recursive call on line 16 can be folded into the call on line 19 as follows.(

M̂L, . . . ,M̂`+1,
̂̃
ϒ
)
← compute-sequence(`−1, ϒ̂, forward, flag, M̂L, . . . , M̂`+1, I)

(Then the call to compute-VW must come after this line.) This saves one recursive call when mode =
forward, but six calls are still used when mode = inverse.

As a further optimization, we show how to modify the algorithm so that five calls suffice in both cases
(at a constant factor cost in space). To achieve this, first interchange V and V † (as well as W and W †)
throughout the algorithm and the proof. Then Ũ = Ṽ †W̃ †ṼW̃ ϒ̃, and the forward case first makes forward
calls on ϒ̂ then Ŵ then V̂ , then inverse calls on Ŵ then V̂ , while the inverse case first makes forward calls
on V̂ then Ŵ , then inverse calls on V̂ then Ŵ then ϒ̂. Note that now all forward calls precede all inverse

calls. If mode = forward, then as we pointed out above, ̂̃ϒ can be obtained through the first recursive call
without the need for a special dummy call. The point of the reshuffling is the following: we claim that

when mode = inverse, the desired matrix ̂̃ϒ must have been computed at some time in the past, so we can
remember it rather than making a dummy call, and further, the total space for all matrices that need to be
“in storage” at any point during the computation is only O(log(1/ε)). To see this, first note that for an
intended input U to a node at level `, the algorithm finds operators, each expressed as a sequence of gates
from S, that approximate U within ε0, . . . ,ε`−1 at levels 0, . . . , `−1, as well as finite-precision matrices
that approximate these operators within the corresponding ε j+1/c. Suppose the algorithm is modified so
that whenever an inverse call is made, the list of these finite-precision matrices is provided as additional

input. Then the desired ̂̃ϒ can be read off as the last matrix in the list, but we now must check that the
invariant can be maintained. When an inverse call makes its final call, which is also an inverse call, it
can just pass on the first `−1 matrices in the list. All other inverse calls that can occur are of V̂ -type or
Ŵ -type. For these cases, the node that made the call previously made a forward call on the same V̂ or Ŵ
(by the reshuffling). This node can store the list for V and the list for W , which were computed during
these forward calls, and then pass on the lists to the corresponding inverse calls. By a geometric sum, the
space to store these two lists is O(log(1/ε`)) where ` is the level of the node. Since we only need to store
a pair of lists at each node along the current path to the root, by another geometric sum we find that the
total space overhead of these lists is O(log(1/ε)).

Kitaev [26] has shown that the length of the output sequence in the standard Solovay-Kitaev algorithm
can be reduced to O(log3+δ (1/ε)) for every positive constant δ . He accomplishes this by rearranging the

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 43

http://dx.doi.org/10.4086/toc

DIETER VAN MELKEBEEK AND THOMAS WATSON

two main ingredients (the translation step from U to U ϒ̃† to get into the neighborhood of the identity,
and the kernel lemma, which only works in the neighborhood of the identity) in a much more careful
way, using the fact that the kernel lemma produces operators that are somewhat close to the identity. This
leads to a complicated recursion tree.

4.3.5 Generalization to arbitrary dimensions

When d > 2 we do not know how to prove the kernel lemma (Lemma 4.6) with the O(log(1/ε)) space
bound, due to the apparent need to diagonalize a skew-hermitian matrix: the known numerical methods for
doing this seem to need to store very accurate approximations (requiring large space) in order to combat
roundoff errors from the divisions. However, when d > 2 we can prove a result similar to Lemma 4.6 but
in which the algorithm produces ε/c-approximations to four operators V1,W1,V2,W2 ∈ SU(d) such that
for every Ṽ1,W̃1,Ṽ2,W̃2 ∈ SU(2) with

∥∥V1−Ṽ1
∥∥, ∥∥W1−W̃1

∥∥, ∥∥V2−Ṽ2
∥∥, ∥∥W2−W̃2

∥∥≤ ε , we have

∥∥U−Ṽ1W̃1Ṽ †
1 W̃ †

1 Ṽ2W̃2Ṽ †
2 W̃ †

2

∥∥≤ bε
1.5 .

(In this result b, c, and ε0 may depend on d.) The idea is due to Nagy [30], and it allows us to bypass
the diagonalization and replace it with simpler calculations which can be performed in small space with
sufficient accuracy (at a cost in the degree of the running time).19 We now describe this modification to
Lemma 4.6; the overall architecture discussed in Section 4.3.3 is then trivial to adapt.

Recall that the problem is step (2): given a matrix F ′ ∈ su(d) such that ‖F ′−0‖ ≤ O(ε), we would
like to compute good approximations to some G,H ∈ su(d) such that F ′= [G,H] and ‖G−0‖, ‖H−0‖≤
O(ε0.5). There are proofs in [11, 26] that such G,H exist. The proof in [11] involves converting to an
orthonormal basis in which all diagonal entries in F ′ are 0 (an off-diagonal matrix), doing some simple
manipulations, and then converting back to the computational basis. Converting to an off-diagonal matrix
can be done by first diagonalizing and then conjugating by a Fourier matrix.

Conjugation by a Fourier matrix does not present any numerical problems, and neither do the simple
manipulations. Thus the diagonalization is the only obstacle. Nagy’s idea is to write F ′ = F ′1 +F ′2 where
F ′1 ∈ su(d) is the diagonal part in the computational basis and F ′2 ∈ su(d) is the off-diagonal part in
the computational basis. Then ‖F ′1− 0‖, ‖F ′2− 0‖ ≤ O(ε), and we can decompose F ′1 = [G1,H1] and
F ′2 = [G2,H2] where ‖G1−0‖, ‖H1−0‖, ‖G2−0‖, ‖H2−0‖ ≤O(ε0.5) and obtain o(ε)-approximations
to G1,H1,G2,H2 in time polylog(1/ε) and space O(log(1/ε)) using simple numerical calculations.
What good is this? Suppose U ′,U ′1,U

′
2 ∈ SU(d) correspond to F ′,F ′1,F

′
2. Then using the fact that

‖F ′1−0‖, ‖F ′2−0‖ ≤O(ε), it can be shown (Problem 8.16 in [26]) that
∥∥U ′−U ′1U ′2

∥∥≤O(ε2). It follows
from Fact 4.10 and Fact 4.11 that for every Ṽ1,W̃1 ∈ SU(d) with

∥∥V1− Ṽ1
∥∥, ∥∥W1−W̃1

∥∥≤ ε (where as
usual V1,W1 ∈ SU(d) correspond to G1,H1), we have∥∥∥U ′1− [Ṽ1,W̃1

]
gp

∥∥∥ ≤ ∥∥U ′1− [V1,W1]gp
∥∥+∥∥∥[V1,W1]gp−

[
Ṽ1,W̃1

]
gp

∥∥∥ ≤ O(ε1.5)+O(ε1.5) ≤ O(ε1.5) ,

19Nagy’s motivation was that diagonalization is generally not available in implementations of systems for symbolic computa-
tion.

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 44

http://dx.doi.org/10.4086/toc

TIME-SPACE EFFICIENT SIMULATIONS OF QUANTUM COMPUTATIONS

and similarly for U ′2. Thus, we have∥∥∥U− [Ṽ1,W̃1
]

gp

[
Ṽ2,W̃2

]
gp

∥∥∥ ≤ ‖U−U ′‖+
∥∥U ′−U ′1U ′2

∥∥+∥∥∥U ′1U ′2−
[
Ṽ1,W̃1

]
gp

[
Ṽ2,W̃2

]
gp

∥∥∥
≤ O(ε1.5)+O(ε2)+O(ε1.5)

≤ O(ε1.5) ,

which is what we wanted to show.

5 Time-space lower bound

In this section we develop one application of our time-space efficient simulation of quantum computations
by unbounded-error randomized computations, namely time-space lower bounds for quantum algorithms
solving problems closely related to satisfiability. We provide background on this research area in
Section 5.1. In Section 5.2 we derive Theorem 1.3 and mention some extensions. We present some
directions for further research in Section 5.3.

5.1 Background

Satisfiability, the problem of deciding whether a given Boolean formula has at least one satisfying
assignment, has tremendous practical and theoretical importance. It emerged as a central problem
in complexity theory with the advent of NP-completeness in the 1970’s. Proving lower bounds on
the complexity of satisfiability remains a major open problem. Complexity theorists conjecture that
satisfiability requires exponential time and linear space to solve in the worst case. Despite decades of
effort, the best single-resource lower bounds for satisfiability on general-purpose models of computation
are still the trivial ones — linear for time and logarithmic for space. However, since the late 1990’s we
have seen a number of results that rule out certain nontrivial combinations of time and space complexity.

One line of research [17, 18, 40, 14, 41], initiated by Fortnow, focuses on proving stronger and
stronger time lower bounds for deterministic algorithms that solve satisfiability in small space. For
subpolynomial (i. e., no(1)) space bounds, the current record [41] states that no such algorithm can run in
time O(nc) for any c < 2cos(π/7)≈ 1.8019.

A second research direction aims to strengthen the lower bounds by considering more powerful
models of computation than the standard deterministic one. Diehl and Van Melkebeek [14] initiated the
study of lower bounds for problems related to satisfiability on randomized models with bounded error.
They showed that for every integer `≥ 2, Σ`SAT cannot be solved in time O(nc) by subpolynomial-space
randomized algorithms with bounded two-sided error for any c < `, where Σ`SAT denotes the problem of
deciding the validity of a given fully quantified Boolean formula with ` alternating blocks of quantifiers
beginning with an existential quantifier. Σ`SAT represents the analogue of satisfiability for the `th level
of the polynomial-time hierarchy; Σ1SAT corresponds to satisfiability. Proving nontrivial time-space
lower bounds for satisfiability on randomized algorithms with bounded two-sided error remains open.

Allender et al. [2] considered the even more powerful (but physically unrealistic) model of randomized
algorithms with unbounded error. They settled for problems that are even harder than Σ`SAT for any
fixed `, namely MAJSAT and MAJMAJSAT, the equivalents of satisfiability and Σ2SAT in the counting

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 45

http://dx.doi.org/10.4086/toc

DIETER VAN MELKEBEEK AND THOMAS WATSON

hierarchy. MAJSAT is the problem of deciding whether a given Boolean formula is satisfied for at least
half of the assignments to its variables. MAJMAJSAT is the problem of deciding whether a given Boolean
formula ϕ on disjoint variable sets y and z has the property that for at least half of the assignments to
y, ϕ is satisfied for at least half of the assignments to z. Toda [36] proved that the polynomial-time
hierarchy reduces to the class PP, which represents polynomial-time randomized computations with
unbounded two-sided error and forms the first level of the counting hierarchy. Apart from dealing with
harder problems, the quantitative strength of the time bounds in the Allender et al. lower bounds is
also somewhat weaker. They showed that no randomized algorithm can solve MAJMAJSAT in time
O(n1+o(1)) and space O(n1−δ) for any positive constant δ .

We refer to [37] for a detailed survey of the past work on time-space lower bounds for satisfiability
and related problems, including a presentation of the Allender et al. lower bound that is somewhat
different from the original one.

5.2 Results

This paper studies the most powerful model that is considered physically realistic, namely quantum
algorithms with bounded error. We obtain the first nontrivial time-space lower bound for quantum
algorithms solving problems related to satisfiability. In the bounded two-sided error randomized setting,
the reason we can get lower bounds for Σ`SAT for ` ≥ 2 but not for ` = 1 relates to the fact that we
know efficient simulations of such randomized computations in the second level of the polynomial-time
hierarchy but not in the first level. In the quantum setting we know of no efficient simulations in any level
of the polynomial-time hierarchy. As an application of our simulation by unbounded-error randomized
algorithms, we bring the lower bounds of Allender et al. to bear on quantum algorithms. We show
that either a time lower bound holds for quantum algorithms solving MAJMAJSAT or a time-space
lower bound holds for MAJSAT (Theorem 1.3). In particular, we get a single time-space lower bound
for MAJMAJSAT (Corollary 1.4). We use the following general lower bound on unbounded-error
randomized algorithms with random access, which is implicit in [2].

Theorem 5.1 (Allender et al. [2]). For every real d and every positive real δ there exists a real c > 1
such that either

• MAJMAJSAT does not have an unbounded-error randomized algorithm running in time O(nc), or

• MAJSAT does not have an unbounded-error randomized algorithm running in time O(nd) and
space O(n1−δ).

Proof of Theorem 1.3. This follows immediately from Theorem 1.1 and Theorem 5.1 if we absorb the
time and space overheads of Theorem 1.1 into the relationship among the parameters c, d, and δ .

Proof of Corollary 1.4. This follows immediately from Theorem 1.3 because MAJSAT trivially reduces
to MAJMAJSAT, and a quantum algorithm running in time O(n1+o(1)) and space O(n1−δ) trivially runs
in time O(nc) for every c > 1.

By exploiting the full power of Theorem 3.1 and Theorem 3.2, we can weaken the conditions
on the error and the complexity of the transition amplitudes in Theorem 1.3. For example, combining

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 46

http://dx.doi.org/10.4086/toc

TIME-SPACE EFFICIENT SIMULATIONS OF QUANTUM COMPUTATIONS

Theorem 3.1 with Theorem 5.1 yields a stronger version of Theorem 1.3 that holds for quantum algorithms
M with error ε ≤ 1/2−1/nO(1) and such that each number in A(M) has a

(
2o(p),2o(p)

)
-approximator.

5.3 Future directions

Several questions remain open regarding time-space lower bounds on quantum models of computation.
An obvious goal is to obtain a quantitative improvement to our lower bound. It would be nice to get
a particular constant c > 1 such that MAJMAJSAT cannot be solved by quantum algorithms running
in O(nc) time and subpolynomial space. The lower bound of Allender et al. does yield this; however,
the constant c is very close to 1, and determining it would require a complicated analysis involving
constant-depth threshold circuitry for iterated multiplication [23]. Perhaps there is a way to remove the
need for this circuitry in the quantum setting.

A major goal is to prove quantum time-space lower bounds for problems that are simpler than
MAJMAJSAT. Ideally we would like lower bounds for satisfiability itself, although lower bounds for
its cousins in PH or ⊕P would also be very interesting. The difficulty in obtaining such lower bounds
arises from the fact that we know of no simulations of quantum computations in these classes. The
known time-space lower bounds for satisfiability and related problems follow the indirect diagonalization
paradigm, which involves assuming the lower bound does not hold and then deriving a contradiction
with a direct diagonalization result. For example, applying this paradigm to quantum algorithms solving
Σ`SAT would entail assuming that Σ`SAT has an efficient quantum algorithm. Since Σ`SAT is complete
for the class Σ`P under very efficient reductions, this hypothesis gives a general simulation of the latter
class on quantum algorithms. To reach a contradiction with a direct diagonalization result, we seem to
need a way to convert these quantum computations back into polynomial-time hierarchy computations.

Obtaining a single time-space lower bound for MAJSAT instead of MAJMAJSAT may be within
reach. Recall that Theorem 5.1 only needs two types of inclusions to derive a contradiction. Under the
hypothesis that MAJSAT has a bounded-error quantum algorithm running in time O(n1+o(1)) and space
O(n1−δ), Theorem 1.1 yields the second inclusion but not the first. One can use the hypothesis to replace
the second majority quantifier of a MAJMAJSAT formula with a quantum computation. However, we do
not know how to use the hypothesis again to remove the first majority quantifier, because the hypothesis
only applies to majority-quantified deterministic computations. Fortnow and Rogers [19] prove that
PPBQP = PP, and their proof shows how to absorb the “quantumness” into the majority quantifier so that
we can apply the hypothesis again. However, their proof critically uses time-expensive amplification
and is not efficient enough to yield a lower bound for MAJSAT via Theorem 5.1. It might be possible to
exploit the space bound to obtain a more efficient inclusion. It might also be possible to exploit more
special properties of the construction in [2] to circumvent the need for the amplification component.

Acknowledgments

We thank Stefan Arnold, Sue Coppersmith, Scott Diehl, John Watrous, and anonymous reviewers for
helpful comments and pointers.

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 47

http://dx.doi.org/10.4086/toc

DIETER VAN MELKEBEEK AND THOMAS WATSON

References

[1] LEONARD ADLEMAN, JONATHAN DEMARRAIS, AND MING-DEH HUANG: Quantum com-
putability. SIAM J. Comput., 26(5):1524–1540, 1997. [doi:10.1137/S0097539795293639] 3, 14,
15

[2] ERIC ALLENDER, MICHAL KOUCKÝ, DETLEF RONNEBURGER, SAMBUDDHA ROY, AND

V. VINAY: Time-space tradeoffs in the counting hierarchy. In Proceedings of the 16th IEEE
Conference on Computational Complexity, pp. 295–302. IEEE Comp. Soc. Press, 2001. 4, 45, 46,
47

[3] ERIC ALLENDER AND MITSUNORI OGIHARA: Relationships among PL, #L, and the determinant.
RAIRO – Theoretical Informatics and Applications, 30:1–21, 1996. 15

[4] ERIC ALLENDER AND KLAUS WAGNER: Counting hierarchies: Polynomial time and constant
depth circuits. In GRZEGORZ ROZENBERG AND ARTO SALOMAA, editors, Current Trends in
Theoretical Computer Science, pp. 469–483. World Scientific, 1993. 4

[5] STEFAN ARNOLD: Personal communication, November 2010. 14

[6] ADRIANO BARENCO: A universal two-bit gate for quantum computation. Proc. R. Soc. Lond. Ser.
A Math. Phys. Eng. Sci., 449:679–683, 1995. [JSTOR:52687] 25

[7] ADRIANO BARENCO, CHARLES BENNETT, RICHARD CLEVE, DAVID DIVINCENZO, NOR-
MAN MARGOLUS, PETER SHOR, TYCHO SLEATOR, JOHN SMOLIN, AND HARALD WE-
INFURTER: Elementary gates for quantum computation. Phys. Rev. A, 52:3457–3467, 1995.
[doi:10.1103/PhysRevA.52.3457] 25

[8] ETHAN BERNSTEIN AND UMESH VAZIRANI: Quantum complexity theory. SIAM J. Comput.,
26(5):1411–1473, 1997. [doi:10.1137/S0097539796300921] 3, 7, 24

[9] PATRICK OSCAR BOYKIN, TAL MOR, MATTHEW PULVER, VWANI ROYCHOWDHURY, AND

FARROKH VATAN: A new universal and fault-tolerant quantum basis. Inform. Process. Lett.,
75(3):101–107, 2000. [doi:10.1016/S0020-0190(00)00084-3] 25

[10] J. CHIAVERINI, J. BRITTON, D. LEIBFRIED, E. KNILL, M. BARRETT, R. BLAKESTAD,
W. ITANO, J. JOST, C. LANGER, R. OZERI, T. SCHAETZ, AND D. WINELAND: Implementation
of the semiclassical quantum Fourier transform in a scalable system. Science, 308(5724):997–1000,
2005. [doi:10.1126/science.1110335] 9

[11] CHRISTOPHER DAWSON AND MICHAEL NIELSEN: The Solovay-Kitaev algorithm. Quantum Inf.
Comput., 6(1):81–95, 2006. 14, 27, 36, 38, 44

[12] DAVID DEUTSCH: Quantum computational networks. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng.
Sci., 425:73–90, 1989. [JSTOR:2398494] 25

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 48

http://dx.doi.org/10.1137/S0097539795293639
http://www.jstor.org/stable/52687
http://dx.doi.org/10.1103/PhysRevA.52.3457
http://dx.doi.org/10.1137/S0097539796300921
http://dx.doi.org/10.1016/S0020-0190(00)00084-3
http://dx.doi.org/10.1126/science.1110335
http://www.jstor.org/stable/2398494
http://dx.doi.org/10.4086/toc

TIME-SPACE EFFICIENT SIMULATIONS OF QUANTUM COMPUTATIONS

[13] DAVID DEUTSCH, ADRIANO BARENCO, AND ARTUR EKERT: Universality in quantum com-
putation. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 449:669–677, 1995. [JSTOR:52686]
25

[14] SCOTT DIEHL AND DIETER VAN MELKEBEEK: Time-space lower bounds for the
polynomial-time hierarchy on randomized machines. SIAM J. Comput., 36(3):563–594, 2006.
[doi:10.1137/050642228] 45

[15] DAVID DIVINCENZO: Two-bit gates are universal for quantum computation. Phys. Rev. A, 51:1015–
1022, 1995. [doi:10.1103/PhysRevA.51.1015] 25

[16] DAVID DIVINCENZO: The physical implementation of quantum computation. Fortschritte der
Physik, 48:771–784, 2000. 9

[17] LANCE FORTNOW: Time-space tradeoffs for satisfiability. J. Comput. System Sci., 60(2):337–353,
2000. [doi:10.1006/jcss.1999.1671] 45

[18] LANCE FORTNOW, RICHARD LIPTON, DIETER VAN MELKEBEEK, AND ANASTASIOS

VIGLAS: Time-space lower bounds for satisfiability. J. ACM, 52(6):835–865, 2005.
[doi:10.1145/1101821.1101822] 45

[19] LANCE FORTNOW AND JOHN ROGERS: Complexity limitations on quantum computation. J.
Comput. System Sci., 59(2):240–252, 1999. [doi:10.1006/jcss.1999.1651] 3, 14, 15, 47

[20] GENE GOLUB AND CHARLES VAN LOAN: Matrix Computations. The Johns Hopkins University
Press, third edition, 1996. 38

[21] LOV GROVER: A fast quantum mechanical algorithm for database search. In Proc. 28th STOC, pp.
212–219. ACM Press, 1996. [doi:10.1145/237814.237866] 5, 12

[22] ARAM HARROW, BENJAMIN RECHT, AND ISAAC CHUANG: Efficient discrete approximations of
quantum gates. J. Math. Phys., 43(9):4445–4451, 2002. [doi:10.1063/1.1495899] 27

[23] WILLIAM HESSE: Division is in uniform TC0. In Proceedings of the 28th International Colloquium
On Automata, Languages, and Programming, pp. 104–114. Springer, 2001. [doi:10.1007/3-540-
48224-5 9] 47

[24] ROGER HORN AND CHARLES JOHNSON: Topics in Matrix Analysis. Cambridge University Press,
1994. 35

[25] ALEXEI KITAEV: Quantum computations: Algorithms and error correction. Russian Math. Surveys,
52(6):1191–1249, 1997. [doi:10.1070/RM1997v052n06ABEH002155] 2, 3, 14, 25, 27

[26] ALEXEI KITAEV, ALEXANDER SHEN, AND MIKHAIL VYALYI: Classical and Quantum Computa-
tion. American Mathematical Society, 2002. 27, 36, 43, 44

[27] SETH LLOYD: Almost any quantum logic gate is universal. Phys. Rev. Lett., 75:346–349, 1995.
[doi:10.1103/PhysRevLett.75.346] 25

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 49

http://www.jstor.org/stable/52686
http://dx.doi.org/10.1137/050642228
http://dx.doi.org/10.1103/PhysRevA.51.1015
http://dx.doi.org/10.1006/jcss.1999.1671
http://dx.doi.org/10.1145/1101821.1101822
http://dx.doi.org/10.1006/jcss.1999.1651
http://dx.doi.org/10.1145/237814.237866
http://dx.doi.org/10.1063/1.1495899
http://dx.doi.org/10.1007/3-540-48224-5_9
http://dx.doi.org/10.1007/3-540-48224-5_9
http://dx.doi.org/10.1070/RM1997v052n06ABEH002155
http://dx.doi.org/10.1103/PhysRevLett.75.346
http://dx.doi.org/10.4086/toc

DIETER VAN MELKEBEEK AND THOMAS WATSON

[28] M. MARIANTONI, H. WANG, T. YAMAMOTO, M. NEELEY, R. BIALCZAK, Y. CHEN, M. LENAN-
DER, E. LUCERO, A. O’CONNELL, D. SANK, M. WEIDES, J. WENNER, Y. YIN, J. ZHAO,
A. KOROTKOV, A. CLELAND, AND J. MARTINIS: Implementing the quantum von Neumann
architecture with superconducting circuits. Science Express, 2011. [doi:10.1126/science.1208517]
9

[29] AMIN MOBASHER, SAEED FATHOLOLOUMI, AND SOMAYYEH RAHIMI: Quantum dot quan-
tum computation. Technical Report 2007-05, University of Waterloo Electrical and Computer
Engineering Department, 2007. 9

[30] ATTILA NAGY: On an implementation of the Solovay-Kitaev algorithm. CoRR, abs/quant-
ph/0606077v1, 2006. [arXiv:quant-ph/0606077v1] 3, 30, 44

[31] MICHAEL NIELSEN AND ISAAC CHUANG: Quantum Computation and Quantum Information.
Cambridge University Press, 2000. 6, 8, 9, 27, 38

[32] SIMON PERDRIX AND PHILIPPE JORRAND: Classically controlled quantum computation. Math.
Structures Comput. Sci., 16(4):601–620, 2006. [doi:10.1016/j.entcs.2005.09.026] 9

[33] ALBERTO POLITI, JONATHAN MATTHEWS, AND JEREMY O’BRIEN: Shor’s quantum factoring
algorithm on a photonic chip. Science, 325(5945):1221, 2009. [doi:10.1126/science.1173731] 9

[34] YAOYUN SHI: Both Toffoli and controlled-NOT need little help to do universal quantum computa-
tion. Quantum Inf. Comput., 3(1):84–92, 2003. 25

[35] PETER SHOR: Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997. [doi:10.1137/S0097539795293172]
5, 12

[36] SEINOSUKE TODA: PP is as hard as the polynomial time hierarchy. SIAM J. Comput., 20(5):865–
877, 1991. [doi:10.1137/0220053] 46

[37] DIETER VAN MELKEBEEK: A survey of lower bounds for satisfiability and related problems. Found.
Trends Theor. Comput. Sci., 2:197–303, 2007. [doi:10.1561/0400000012] 3, 11, 46

[38] JOHN WATROUS: Space-bounded quantum complexity. J. Comput. System Sci., 59(2):281–326,
1999. [doi:10.1006/jcss.1999.1655] 8, 14, 15, 24

[39] JOHN WATROUS: On the complexity of simulating space-bounded quantum computations. Com-
putational Complexity, 12(1-2):48–84, 2003. [doi:10.1007/s00037-003-0177-8] 8, 9, 10, 14, 15,
16

[40] RYAN WILLIAMS: Inductive time-space lower bounds for SAT and related problems. Comput.
Complexity, 15(4):433–470, 2006. [doi:10.1007/s00037-007-0221-1] 45

[41] RYAN WILLIAMS: Time-space tradeoffs for counting NP solutions modulo integers. Comput.
Complexity, 17(2):179–219, 2008. [doi:10.1007/s00037-008-0248-y] 45

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 50

http://dx.doi.org/10.1126/science.1208517
http://arxiv.org/abs/quant-ph/0606077v1
http://dx.doi.org/10.1016/j.entcs.2005.09.026
http://dx.doi.org/10.1126/science.1173731
http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1137/0220053
http://dx.doi.org/10.1561/0400000012
http://dx.doi.org/10.1006/jcss.1999.1655
http://dx.doi.org/10.1007/s00037-003-0177-8
http://dx.doi.org/10.1007/s00037-007-0221-1
http://dx.doi.org/10.1007/s00037-008-0248-y
http://dx.doi.org/10.4086/toc

TIME-SPACE EFFICIENT SIMULATIONS OF QUANTUM COMPUTATIONS

[42] HOWARD WISEMAN AND GERARD MILBURN: Quantum Measurement and Control. Cambridge
University Press, 2009. 6

[43] ABUZER YAKARYILMAZ AND A. C. CEM SAY: Unbounded-error quantum computation with
small space bounds. Inform. and Comput., 209(6):873–892, 2011. [doi:10.1016/j.ic.2011.01.008] 8

AUTHORS

Dieter van Melkebeek
associate professor
Department of Computer Sciences
University of Wisconsin-Madison
Madison, Wisconsin, USA
dieter cs wisc edu
http://pages.cs.wisc.edu/~dieter/

Thomas Watson
graduate student
Computer Science Division
University of California, Berkeley
Berkeley, California, USA
tom cs berkeley edu
http://www.cs.berkeley.edu/~tom/

ABOUT THE AUTHORS

DIETER VAN MELKEBEEK received his Ph. D. from the University of Chicago, under the
supervision of Lance Fortnow. His thesis was awarded the ACM Doctoral Dissertation
Award. After postdocs at DIMACS and the Institute for Advanced Study, he joined the
faculty at the University of Wisconsin-Madison.

THOMAS WATSON is a Ph. D. student at the University of California, Berkeley, advised by
Luca Trevisan. He received his undergraduate degree from the University of Wisconsin-
Madison. His research interests include pseudorandomness, average-case complexity,
and quantum computation.

THEORY OF COMPUTING, Volume 8 (2012), pp. 1–51 51

http://dx.doi.org/10.1016/j.ic.2011.01.008
http://pages.cs.wisc.edu/~dieter/
http://www.cs.berkeley.edu/~tom/
http://www.uchicago.edu
http://lance.fortnow.com
http://awards.acm.org/homepage.cfm?srt=all&awd=146
http://awards.acm.org/homepage.cfm?srt=all&awd=146
http://dimacs.rutgers.edu
http://www.ias.edu
http://www.wisc.edu
http://www.berkeley.edu
http://cs.stanford.edu/people/trevisan/
http://www.wisc.edu
http://www.wisc.edu
http://dx.doi.org/10.4086/toc

	Introduction
	Models of quantum computation
	Issues
	Earlier models
	Models with quantum control
	Models with classical control

	Our model
	Model definition
	Complexity measures

	Randomized simulation
	General result and instantiations
	Intuition and relationship to previous work
	Proof of Theorem 3.2
	Algorithm construction
	Postponing measurements

	Remarks

	Quantum simulation
	Overview
	Intuition
	Overview of the standard algorithm
	The numerical precision problem
	Reducing the space in the overall architecture
	Obtaining the matrix U Upsilon

	Proof of Theorem 4.3
	Reduction from Theorem 4.3 to Theorem 4.5
	The kernel (d=2)
	The full algorithm (d=2)
	Optimizations
	Generalization to arbitrary dimensions

	Time-space lower bound
	Background
	Results
	Future directions

	References

