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Abstract: We consider the problem of distribution-free testing of the class of monotone
monomials and the class of monomials over n variables. While there are very efficient testers
for a variety of classes of functions when the underlying distribution is uniform, designing
distribution-free testers (which must work under an arbitrary and unknown distribution)
tends to be more challenging. When the underlying distribution is uniform, Parnas et
al. (SIAM J. Discr. Math., 2002) give a tester for (monotone) monomials whose query
complexity does not depend on n, and whose dependence on the distance parameter is
(inverse) linear. In contrast, Glasner and Servedio (Theory of Computing, 2009) prove that
every distribution-free tester for monotone monomials as well as for general monomials
must have query complexity Ω̃(n1/5) (for a constant distance parameter ε).

In this paper we present distribution-free testers for these classes with query complexity
Õ(n1/2/ε). We note that in contrast to previous results for distribution-free testing, our
testers do not build on the testers that work under the uniform distribution. Rather, we
define and exploit certain structural properties of monomials (and functions that differ from
them on a non-negligible part of the input space), which were not used in previous work on
property testing.
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1 Introduction

Testers (for properties of functions) are algorithms that separate the functions with a prespecified property
from the functions that are “far” from having the property with respect to some fixed distance measure.
In most works on property testing, distance is measured with respect to the uniform distribution over the
function domain. While in many contexts this distance is appropriate, as it corresponds to assigning equal
“importance” or weight to each point in the domain, there are scenarios in which we may want to deal
with an underlying weight distribution that is not uniform, and furthermore, is not known to the tester. We
refer to the latter model as distribution-free property testing, while testing under the uniform distribution
is considered to be the standard model. In the standard model the tester is given query access to the
tested function; in the distribution-free model the tester is also given access to sample inputs distributed
according to the unknown underlying distribution. By the complexity of the tester we mean its query
complexity. (In the complexity of a tester we count both the queries on the points sampled according to
the underlying distribution and the queries on points selected by the tester.)

Indeed, the notion of distribution-free testing is inspired by the distribution-free (Probably Approxi-
mately Correct (PAC)) learning model [19] and understanding the relation between testing and learning is
one of the issues of interest in the study of property testing. As observed in [9], the complexity of testing
a function class F (that is, testing the property of membership in F) is not higher than (proper) learning
the class F (under the same conditions, e. g., with respect to the uniform distribution or distribution-free).
In view of this, a natural question is for what classes of functions is the complexity of testing strictly
lower than that of learning. Note that, as opposed to learning, if we have a tester for (membership in) a
class of functions F, this does not imply that we have a tester (with similar complexity) for all subclasses
F′ of F.

There is quite a large variety of function classes for which the complexity of testing is strictly lower
than that of learning when the underlying distribution is uniform (e. g., linear functions [1], low-degree
polynomials [17], singletons, monomials [16] and small monotone DNF [16], monotone functions
(e. g., [5, 4]), small juntas [6], small decision lists, decision trees and (general) DNF [3] linear threshold
functions [14], and more). In contrast, there are relatively few such positive results for distribution-free
testing [10, 11, 12], and, in general, designing distribution-free testers tends to be more challenging.

One of the main positive results for distribution-free testing [10] is that every function class that has a
standard tester and can be efficiently self-corrected [1], has a distribution-free tester whose complexity
is similar to that of the standard tester. In particular this implies that there are efficient distribution-free
testers for linear functions and more generally, for low-degree polynomials [10]. However, there are
function classes of interest (in particular from the point of view of learning theory), which have efficient
standard testers, but for which self-correctors do not exist (or are not known to exist). Several such classes
(of Boolean functions over {0,1}n) were studied by Glasner and Servedio [7]. Specifically, they consider
monotone monomials, general monomials, decisions lists, and linear threshold functions. They prove
that for these classes, in contrast to standard testing, where the query complexity does not depend on the
number of variables n, every distribution-free tester must make Ω((n/ logn)1/5) queries (for a constant
distance parameter ε). While these negative results establish that a strong dependence on n is unavoidable
for these functions classes in the distribution-free case, it still leaves open the question of whether some
sublinear dependence on n is possible (while distribution-free learning (with queries) requires at least
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linear query complexity [18]).

Our results In this work we prove that both for monotone monomials and for general monomials,
a sublinear dependence on n can be achieved for distribution-free testing. Specifically, we describe
distribution-free testers for these families whose query complexity is O(

√
n logn/ε). Thus we advance

our knowledge concerning efficient distribution-free testing for two basic function classes. Furthermore,
while previous distribution-free testers have been based on, and are similar to the corresponding standard
testers, this is not the case for our testers. Rather, we define and exploit certain structural properties
of monomials (and functions that differ from them in a non-negligible manner), which were not used
in previous work on property testing in the standard model. In what follows we give some intuition
concerning the difficulty encountered when trying to extend standard testing of (monotone) monomials to
distribution-free testing and then shortly discuss the ideas behind our testers.

Standard vs. distribution-free testing of monomials The first simple observation concerning testing
monomials under the uniform distribution is the following. If f is a k-monomial (that is, a conjunction of k
literals), then Pr[ f (x) = 1] = 2−k (where the probability is over a uniformly selected x). This implies that
we can effectively consider only relatively small monomials, that is, k-monomials for k = log(O(1/ε)),
and it allows the tester to have an exponential dependence on k (since this translates to a linear dependence
on 1/ε). This is not in general the case when the underlying distribution is arbitrary. In particular, the
functions considered in the lower bound proof of [7] (some of which are monomials, and some of
which are far from being monomials), depend on Ω(n) variables. Thus, for these functions, considering
uniformly selected points, essentially gives no information (since the function assigns value 0 to all but a
tiny fraction of the points). Furthermore, the support of the distribution D defined in [7] is such that the
following holds. If one takes a sample (distributed according to D) of size smaller than the square-root
of the support size of D (where there are roughly n2/5 points in the support), and performs queries on
the sampled points, then it is not possible to distinguish between the monomials and the functions that
are far from being monomials (with respect to D). Thus, by sampling according to D, we essentially get
no information unless the size of the sample is above a (fairly high) threshold. On the other hand, if we
perform queries outside the support of D, then intuitively (and this is formalized in [7]), violations (with
respect to being a monomial) are hard to find.

Before continuing with a high level description of our testers, we note that if we restrict the task
of testing to distribution-free testing of (monotone) k-monomials, where k is fixed, then there is a
tester whose query complexity grows exponentially with k. This follows by combining two results: (1)
The aforementioned result of Halevy and Kushilevitz [10] concerning the use of “self-correction” in
transforming standard testers to distribution-free testers; (2) The result of Parnas et al. [16] for testing
(monotone) monomials, which has a self-corrector (with complexity 2k) as a building block. This implies
that for small k (i. e., k ≤ logn−ω(1)), we have a tester with complexity that is sublinear in n. Hence,
the question is what can be done when it is not assumed that k is small.

Our testers: Ideas and techniques In what follows we discuss the tester for monotone monomials
over {0,1}n. The tester for general monomials has the same high-level structure, and can be viewed as a
generalization of the tester for monotone monomials.
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Our tester tries to find evidence that the tested function f is not a monotone monomial (where if f is
a monotone monomial then clearly the tester will not find such evidence). The tester looks for evidence
in the form of a small subset of points {y0,y1, . . . ,yt}, each in {0,1}n, where f (y0) = 0 and f (yi) = 1 for
each 1≤ i≤ t, such that no monotone monomial agrees with f on this subset.

Based on these subsets we introduce a notion that is central to our tester and its analysis: the violation
hypergraph of f , which we denote by H f . The vertex-set of H f is {0,1}n, and its edge-set corresponds to
subsets of the form described above. By the definition of H f , if f is a monotone monomial, then H f has
no edges. On the other hand, we prove that if f is far from being a monotone monomial (with respect to
the underlying distribution, D), then every vertex cover of the (edges of) H f must have relatively large
weight (with respect to D). We use this fact to show that if f is far from being a monotone monomial,
then our tester finds a (small) edge in H f (with high probability). We next give a high level description of
the tester.

Our tester works in two stages, where in each stage it takes a sample of size O(
√

n/ε), distributed
according to D. In the first stage it only considers the points y in the sample such that y ∈ f−1(0). If f is
a monotone monomial, then for each such point y there must be at least one index j such that y j = 0 and
x j is a variable in the monomial. Hence, for each point y ∈ f−1(0) that is selected in the first sample, the
tester searches for such a representative index j (as explained in detail in Subsection 3.2). If any search
fails, then the tester rejects, since it has evidence that f is not a monotone monomial. This evidence is in
the form of an edge (of size 3) in H f . Otherwise, the tester has a set J of indices.

In the second stage, the tester considers only the sample points y ∈ f−1(1). For each such sample
point y it checks whether there exists an index j ∈ J such that y j = 0. If such an index exists, then an
edge in H f is found and the tester rejects. The crux of the proof is showing that if the probability that
the tester does not find evidence (in both stages) is small, then it is possible to construct a small-weight
vertex cover in H f (implying that f is close to being a monotone monomial).

Other related work In addition to the results mentioned previously, Halevy and Kushilevitz [10] study
distribution-free testing of monotonicity for functions f : Σn → R (where Σ and R are fully ordered).
Building on the (one-dimensional) standard tester in [5] they give a distribution-free tester whose query
complexity is O((2log |Σ|)n/ε). Thus, the dependence on the dimension, n is exponential, in contrast to
some of the standard testers for monotonicity [8, 4] where the dependence on n is linear.1 Halevy and
Kushilevitz [10] prove that the exponential dependence on n is unavoidable for distribution-free testing
even in the case of Boolean functions over the Boolean hypercube (that is, |Σ|= |R|= 2). In [12], Halevy
and Kushilevitz further the study of testing monotonicity over graph products.

Halevy and Kushilevitz [11] also study distribution-free testing of graph properties in sparse graphs,
and give a distribution-free tester for connectivity, with similar complexity to the standard tester for this
property.

We note that for some properties that have efficient standard testers, the testers can be extended to
work under more general families of distributions such as product distributions (e. g., [6, 3]). In recent
work, Kopparty and Saraf [13] consider tolerant testing [15] of linearity under non-uniform distributions
(that have certain properties).

1To be precise, the complexity of the tester in [4] is O(n log |Σ| log |R|/ε), where |R| is the effective size of the range of the
function, that is, the number of distinct values of the function.
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Organization We start by introducing some notation and definitions in Section 2. In Section 3 we
describe and analyze the distribution-free tester for monotone monomials, and in Section 4 we explain
how to extend it to general monomials.

Further research Perhaps the first question that comes to mind is what is the exact complexity of
distribution-free testing of (monotone) monomials given the gap between our upper bound and the lower
bound of [7]. It will also be interesting to design sublinear testers for the other function classes studied
in [7]. Another direction is to study testing of monomials and other basic function classes under known
distributions (other than the uniform distribution).

2 Preliminaries

For an integer k we let [k] def
= {1, . . . ,k}. In all that follows we consider Boolean functions f whose

domain is {0,1}n.

Definition 2.1 (Monomials). A function f : {0,1}n→{0,1} is a monomial if it is a conjunction (“and”)
of a subset of the literals {x1, x̄1, . . . ,xn, x̄n}. It is a monotone monomial if it is a conjunction only of
variables (and no negations of variables). We denote the class of monomials by MON and the class of
monotone monomials by MONM.

We note that we allow the special case that the subset of literals (variables) is empty, in which case f
is the all-1 function. In Subsections 3.4 and 4.4 we discuss how to augment our tests so that they work for
the case that the subset of literals (variables) must be non-empty.

Definition 2.2 (Distance). Let D be a distribution over {0,1}n. For two functions f ,g : {0,1}n→{0,1},
we let

distD( f ,g) def
= Pr

x∼D
[ f (x) 6= g(x)] (2.1)

denote the distance between f and g with respect to D. For a function f : {0,1}n→{0,1} and a set of
Boolean functions Fn over {0,1}n, we let

distD( f ,Fn)
def
= min

g∈Fn
{distD( f ,g)} (2.2)

denote the distance between f and the set Fn.

Note that the distance between f and Fn with respect to D can be 0 while f /∈ Fn.

Definition 2.3 (Distribution-Free Testing). Let F = {Fn} be a class of Boolean functions, where each
Fn is a set of Boolean functions over {0,1}n. A distribution-free tester for (membership in) F is given
the value of n, access to examples that are distributed according to an unknown distribution D over
{0,1}n, and query access to an unknown function f : {0,1}n→{0,1}. The tester is also given a distance
parameter 0 < ε < 1, and is required to behave as follows.

• If f ∈ Fn, then the tester should accept with probability at least 2/3.
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• If distD( f ,Fn)> ε , then the tester should reject with probability at least 2/3.

If the tester accepts every f ∈ Fn with probability 1, then it is a one-sided error tester.

In all that follows f always denotes the (unknown) tested function, and D denotes the (unknown)
underlying distribution with respect to which the tester should work. For a point y ∈ {0,1}n let D(y)
denote the probability assigned to y by D, and for a subset S⊆ {0,1}n let D(S) = ∑y∈S D(y) denote the
weight that D assigns to the subset S. For the sake of simplicity, with a slight abuse of notation, we may
write f ∈ F (instead of f ∈ Fn), and distD( f ,F) (instead of distD( f ,Fn)).

As noted in the introduction, by the complexity of a tester we mean its query complexity (which
includes both queries on examples that are generated according to the unknown underlying distribution D
as well as queries on points selected by the tester).

We assume without loss of generality that ε ≥ 2−n since otherwise, by performing a number of queries
that is linear in 1/ε (that is, querying f on all domain elements), it is possible to determine whether or
not f is a monotone monomial.

3 Distribution-free testing of monotone monomials

We start by introducing the notion of a violation hypergraph of a function and establishing its relation to
(the distance to) monotone monomials.

3.1 The violation hypergraph

Before defining the violation hypergraph, we introduce some notation. For each point y ∈ {0,1}n let

Z(y) def
= { j : y j = 0} and let O(y) def

= { j : y j = 1} .

We use 1n to denote the all-1 vector (point).
Let g be a Boolean function over {0,1}n and let {y0,y1, . . . ,yt} ⊆ {0,1}n be a subset of points such

that g(y0) = 0 and g(yi) = 1 for all 1≤ i≤ t. A simple but useful observation is that if g is a monotone
monomial, then Z(y0) must include at least one index j such that j ∈

⋂t
i=1 O(yi). This is true because

if g is a monotone monomial, then the subset of indices that correspond to the variables that g is a
conjunction of must be a subset of

⋂t
i=1 O(yi). But then there must be at least one index j ∈

⋂t
i=1 O(yi)

for which y0
j = 0, or else g(y0) would be 1. In other words, if Z(y0) does not include any index j such

that j ∈
⋂t

i=1 O(yi), which is equivalent to
⋂t

i=1 O(yi)⊆ O(y0), then g cannot be a monotone monomial.
This observation motivates the next definition.

Definition 3.1 (Violation Hypergraph of f ). Let H f = (V (H f )),E(H f )) be the hypergraph whose vertex
set, V (H f ) is {0,1}n, and whose edge set, E(H f ), contains all subsets {y0,y1, . . . ,yt} ⊆ {0,1}n, t ≥ 1, of
the following form:

• f (y0) = 0 and f (yi) = 1 for all 1≤ i≤ t.

•
⋂t

i=1 O(yi)⊆ O(y0).
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If f (1n) = 0, then {1n} ∈ E(H f ) as well.

For example, suppose that f (0011) = 0, f (0110) = 1 and f (1011) = 1. Then O(0011) = {3,4},
O(0110) = {2,3}, and O(1011) = {1,3,4}, so that O(0110)∩O(1011) = {3}, which is a subset of
O(0011), implying that {0011,0110,1011} is an edge in H f . Also note that the edge-set of the hypergraph
may be exponentially large in n, and edges may have large size (e. g., Ω(n)). Finally, observe that the
second condition in the definition of the edges of H f , that is,

⋂t
i=1 O(yi) ⊆ O(y0), is equivalent to

Z(y0)⊆
⋃t

i=1 Z(yi).
By the observation preceding Definition 3.1, if f is a monotone monomial, then E(H f ) = /0. We

next claim that the reverse implication holds as well, so that we obtain a characterization of monotone
monomials that is based on H f .

Lemma 3.2. If E(H f ) = /0, then f is a monotone monomial.

Lemma 3.2 follows directly from the next claim (setting R = {0,1}n). The claim will also serve us in
proving an additional lemma.

Claim 3.3. Let R be a subset of {0,1}n and let H f (R) = (R,E(H f (R))) be the sub-hypergraph of H f

where E(H f (R)) consists of all edges in H f that are contained 2 in R. If E(H f (R)) = /0 then there exists
h ∈MONM such that h(x) = f (x) for every x ∈ R.

Proof. If f−1(1)∩R = /0, that is, R⊆ f−1(0), then, since E(H f (R)) = /0, necessarily 1n /∈ R. In this case
we let h be the monomial that is the conjunction of all variables x j (so that it has value 1 only on 1n and 0
elsewhere). Since f−1(1)∩R = /0, this monomial is consistent with all points in R.

Otherwise, let
M =

⋂
y∈ f−1(1)∩R

O(y) .

Note that since E(H f (R)) = /0, necessarily f (1n) = 1, and so f−1(1) 6= /0. Let h be the monotone
monomial that is the conjunction of all x j such that j ∈ M (where if M is empty, then h is the all-1
function). That is, h(x) =

∧
j∈M x j. We next show that f (y) = h(y) for all y ∈ {0,1}n∩R.

By the definition of h, for all y∈ f−1(1)∩R, h(y) = 1. To establish that h(y) = 0 for all y∈ f−1(0)∩R,
assume in contradiction that there is a point y0 ∈ f−1(0)∩R such that h(y0) = 1. Since h(y0) = 1 we
have (by the definition of h) that y0

j = 1 for all j ∈M. That is,⋂
y∈ f−1(1)∩R

O(y)⊆ O(y0) .

But this means that {y0}∪ ( f−1(1)∩R) is an edge in H f (R) and we have reached a contradiction.

Recall that a vertex cover of a hypergraph is a subset of the vertices that intersects every edge in the
hypergraph. We next establish that if f is far from being a monotone monomial (with respect to D), then
every vertex cover of H f must have large weight (with respect to D). This lemma strengthens Lemma 3.2

2We could refer to this as the sub-hypergraph induced by R, but this term is usually used for a slightly different notion in the
context of hypergraphs.
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in the following sense. Lemma 3.2 is equivalent to saying that if f is not a monotone monomial, then
E(H f ) 6= /0. In particular this implies that if f is not a monotone monomial, then every vertex cover of
H f is non-empty. Lemma 3.4 can be viewed as quantifying this statement (and taking into account the
underlying distribution D).

Lemma 3.4. If distD( f ,MONM)> ε , then for every vertex cover C of H f we have D(C)> ε .

Proof. Assume, contrary to the claim, that there exists a vertex cover C of H f such that D(C)≤ ε . Let
R = {0,1}n \C be the vertices that do not belong to the vertex-cover. Since C is a vertex cover, we have
that E(H f (R)) = /0. By Claim 3.3 there is a monotone monomial that is consistent with f on R. Since
D(C)≤ ε this implies that distD(h, f )≤ ε , in contradiction to the premise of the lemma.

By Lemmas 3.2 and 3.4, if f is a monotone monomial, then E(H f ) = /0, so that trivially every
minimum vertex cover of H f is empty, while if distD( f ,MONM)> ε , then every vertex cover of H f has
weight greater than ε with respect to D. We would like to show that this implies that if distD( f ,MONM)>
ε , then we can actually find (with high probability) an edge in H f , which provides evidence to the fact
that f is not a monotone monomial.

3.2 The tester

We first introduce some more notation. Let ē j = 1 j−101n− j. For any subset Z ⊆ [n], let y(Z) be the point
in {0,1}n such that for every j ∈ Z its jth coordinate is 0, and for every j /∈ Z its jth coordinate is 1. For
any subset S⊆ {0,1}n, let S f ,0 = {y ∈ S : f (y) = 0} and S f ,1 = {y ∈ S : f (y) = 1}.

The first observation on which our tester is based is that for every point y ∈ f−1(0), there must be at
least one index j ∈ Z(y) for which f (ē j) = 0, or else we have evidence that f is not a monotone monomial.
In fact, we do not need to verify that f (ē j) 6= 0 for every j ∈ Z(y) in order to obtain evidence that f is not
a monotone monomial. Rather, if we search for such an index (in a manner described momentarily), and
this search fails, then we already have evidence that f is not a monotone monomial.

The search procedure (which performs a binary search), receives as input a point y ∈ f−1(0) and
searches for an index j ∈ Z(y) such that f (ē j) = 0. This is done by repeatedly partitioning a set of indices,
Z, starting with Z = Z(y), into two parts Z1 and Z2 of (almost) equal size, and continuing the search with
a part Zi, i ∈ {1,2} for which f (y(Zi)) = 0. (If both parts satisfy the condition, then we continue with
Z1.) Note that if both f (y(Z1)) = 1 and f (y(Z2)) = 1, then we have evidence that f is not a monotone
monomial because f (y(Z1∪Z2)) = 0 (so that {y(Z1∪Z2),y(Z1),y(Z2)} is an edge in H f ). The search
also fails (from the start) if Z(y) = /0 (that is, y = 1n). For the precise pseudo-code of the procedure, see
Figure 1.

The tester starts by obtaining a sample of Θ(
√

n/ε) points, where each point is generated indepen-
dently according to D. (Since the points are generated independently, repetitions may occur.) For each
point in the sample that belongs to f−1(0), the tester calls the binary search procedure. If any search
fails, then the tester rejects f (recall that in such a case the tester has evidence that f is not a monotone
monomial). Otherwise, the tester has a collection of indices J such that f (ē j) = 0 for every j ∈ J. The
tester then takes an additional sample, also of size Θ(

√
n/ε), and checks whether there exists a point y

in the sample such that f (y) = 1 and Z(y) contains some j ∈ J. In such a case the tester has evidence
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Algorithm 1. Binary Search (Input: y ∈ {0,1}n)

1. Z← Z(y).

2. if |Z|= 0, then output fail and halt.

3. While (|Z| ≥ 2) do

Let (Z1,Z2) be a fixed partition of Z where ||Z1|− |Z2|| ≤ 1.
Specifically, Z1 is the set of the first b|Z|/2c indices in Z.

• If f (y(Z1)) = 0, then Z← Z1;
• else if f (y(Z2)) = 0, then Z← Z2;
• else output fail and halt.

4. Output the single index that remains in Z.

Figure 1: The binary search procedure for monotone monomials.

that f is not a monotone monomial (specifically, {ē j,y} is an edge in H f ), and it rejects. For the precise
pseudo-code of the tester, see Figure 2.

We shall use Lemma 3.4 to show that if distD( f ,MONM) is relatively large, then either the first
sample will contain a point on which the binary search procedure fails (with high probability over the
choice of the first sample), or the second sample will contain a point y such that f (y) = 1 and Z(y)∩J 6= /0
(with high probability over the choice of both samples).

Algorithm 2. Monotone Monomials Test

1. Obtain a sample T of Θ(
√

n/ε) points, each generated independently according to D.

2. For each point y ∈ Tf ,0 run the binary search procedure (Algorithm 1) on y.

3. If the binary search fails for any of the points, then output reject and halt. Otherwise, for each
y ∈ Tf ,0 let j(y) be the index returned for y, and let J(Tf ,0) =

⋃
y∈Tf ,0
{ j(y)}.

4. Obtain another sample T ′ of size Θ(
√

n/ε) (generated independently according to D).

5. If there is a point y ∈ T ′f ,1 such that Z(y)∩ J(Tf ,0) 6= /0, then output reject, otherwise output
accept.

Figure 2: The distribution-free tester for monotone monomials.

3.3 The analysis of the tester for monotone monomials

The next definition will serve us in the analysis of the tester.
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Definition 3.5 (Empty points and representative indices). For a point y ∈ f−1(0), we say that y is empty
(with respect to f ) if the binary search procedure (Algorithm 1) fails on y. We denote the set of empty
points (with respect to f ) by Y/0( f ). If y is not empty, then we let j(y) ∈ Z(y) denote the index that the
binary search procedure returns. We refer to this index as the representative index for y. If y ∈ Y/0( f ),
then j(y) is defined to be 0.

Note that since the binary search procedure is deterministic, the index j(y) is uniquely defined for
each y /∈ Y/0( f ).

As in Algorithm 2, for a sample T and Tf ,0 = T ∩ f−1(0), we let

J(Tf ,0) = { j(y) : y ∈ Tf ,0 \Y/0( f )}

denote the set of representative indices for the sample. For any subset J ⊆ [n], let Yf ,1(J) denote the
set of all points y ∈ f−1(1) for which Z(y)

⋂
J 6= /0. In particular, if we set J = J(Tf ,0), then each point

y ∈ Yf ,1(J), together with any index j in the intersection of Z(y) with J, provide evidence that f is not a
monotone monomial (i. e., {ē j,y} ∈ E(H f )}). We next state our main lemma.

Lemma 3.6. Suppose that distD( f ,MONM)> ε and consider a sample T of c1
√

n/ε points generated
independently according to D. For a sufficiently large constant c1, with probability at least 5/6 over the
choice of T , either Tf ,0 contains an empty point (with respect to f ) or D(Yf ,1(J(Tf ,0)))≥ ε/(4

√
n).

As we show subsequently, the correctness of the tester follows quite easily from Lemma 3.6. Before
proving Lemma 3.6 in detail, we give the high level idea of the proof. Lemma 3.6 is established by
proving the contrapositive statement. Namely, if the probability (over the choice of T ) that Tf ,0 does
not contain an empty point (with respect to f ) and D(Yf ,1(J(Tf ,0))) < ε/(4

√
n) is at least 1/6, then

distD( f ,MONM)≤ ε . This is proved by applying a probabilistic argument to construct a vertex cover C
of H f such that D(C)≤ ε (assuming the counter-assumption holds), and then applying (the contrapositve
of) Lemma 3.4.

Specifically, we first put in the cover C all empty points. This takes care of all edges that contain
empty points, where by the (first part of) the counter-assumption, the total weight of all empty points
is very small. In the next stage we work in O(

√
n) iterations. Each iteration ` (except, possibly, for the

last iteration), is associated with a subset J` of new representative indices (i. e., indices that were not
associated with previous iterations). We prove that in each iteration (except, possibly, the last) there exists
such a subset of indices having size Ω(

√
n). The subset of points (all from f−1(1)) that are added to C in

iteration ` covers all edges {y0,y1, . . . ,yt} such that j(y0)∈ J`. The second part of the counter-assumption
is used to ensure that the weight of each subset of points that is added to the cover is O(ε/

√
n) (so that we

get a total weight of O(ε) over all iterations). In the last stage we add to C all points in f−1(0) that reside
in edges that are not yet covered, where we can show that the total weight of these points is O(ε) as well.

The above discussion hints to the reason why the sizes of the samples taken by the tester grow like√
n. Roughly speaking, if the first sample, T , is significantly smaller than

√
n, then the second sample,

T ′, has to be significantly larger. In other words, if we want to decrease the size of the sample T in
Lemma 3.6, then we also need to decrease the lower bound on D(Yf ,1(J(Tf ,0))). The reason is that as the
size of T decreases, the sizes of the subsets J` (defined in the proof of Lemma 3.6) decrease as well, and
the number of iterations in the construction of the vertex cover C increases. But then, in order to obtain a
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vertex cover with small total weight, the weights of the subsets of points that are added in each iteration,
must be smaller.

More formally, the proof of Lemma 3.6 builds on Claim 3.7, stated next, which in turn uses the
following notation: For a subset J ⊆ [n], we let Yf ,0(J) denote the set of points y ∈ f−1(0) for which3

j(y) ∈ J.

Claim 3.7. Let I be any fixed subset of [n], and consider a sample T of s = c1
√

n/ε points generated
independently according to D. For a sufficiently large constant c1, with probability at least 9/10 over the
choice of T , either

|J(Tf ,0)\ I| ≥
√

n or D(Yf ,0([n]\ (J(Tf ,0)∪ I)))≤ ε/2 .

To make Claim 3.7 more concrete, consider the special case in which I = /0. The lemma simply says
that with probability at least 9/10 (over the choice of T ) either the subset of indices J(Tf ,0) is relatively
large, or the weight of the set of points y in f−1(0) for which j(y) is not contained in J(Tf ,0) is relatively
small.

Proof. Consider selecting the points in T one after the other, where for `= 1, . . . ,s = c1
√

n/ε we let y`

denote the `th point selected, and we let T ` = {y1, . . . ,y`} (where T 0 = /0). Let

Y ` = Yf ,0([n]\ (J(T `−1
f ,0 )∪ I))

denote the set of points in f−1(0) whose representative index differs from all the previously found
representative indices and does not belong to I. For each 1 ≤ ` ≤ s, let χ` be a 0/1-valued random
variable, where χ` = 1 if either D(Y `) ≥ ε/2 and y` ∈ Y ` (so that j(y`) is a new representative index),
or D(Y `) < ε/2. Thus, in either case Pr[χ` = 1] ≥ ε/2. Observe that if for some `0 we have that
D(Y `0)< ε/2, then D(Y `)< ε/2 for all `≥ `0.

While χ1, . . . ,χs are not independent random variables, we can bound the probability that their sum
is smaller than

√
n by considering slightly different random variables, which are independent.4 For each

1≤ `≤ s, let p` = Pr[χ` = 1], so that if D(Y `)≥ ε/2, then p` = D(Y `), and if D(Y `)< ε/2, then p` = 1.
Let ρ1, . . . ,ρs be 0/1-valued random variable, where ρ` is the outcome of a coin-flip having bias ε/(2p`).
Finally, let χ̃1, . . . , χ̃s be random variables that are defined as follows based on χ1, . . . ,χs and ρ1, . . . ,ρs:
χ̃` = 1 if χ` = 1 and ρ` = 1. The main two observations concerning each χ̃` are:

1. For any outcome of χ̃1, . . . , χ̃`−1 we have that Pr[χ̃` = 1 | χ̃1, . . . , χ̃`−1] = ε/2. Thus, χ̃1, . . . , χ̃s

are independent, equally distributed, random variables.

2. If χ̃` = 1, then necessarily χ` = 1. Therefore, for any threshold t we have that

Pr

[
s

∑
`=1

χ
` ≥ t

]
≥ Pr

[
s

∑
`=1

χ̃
` ≥ t

]
.

3Note that Y f ,0(J) and Y f ,1(J) do not only differ in that they refer to points in f−1(0) and f−1(1), respectively. Rather,
Y f ,0(J) is the subset of points y (in f−1(0)) whose representative index j(y) belongs to J, while Y f ,1(J) is the subset of points y
(in f−1(1)) for which some index j ∈ Z(y) belongs to J.

4We note that we could apply an analysis using martingales (and Azuma’s inequality), but then we would get a higher
dependence on 1/ε .
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It therefore suffices to analyze the behavior of χ̃1, . . . , χ̃s. Letting c1 = 64 (so that s = 64
√

n/ε), by the
foregoing discussion and by applying a multiplicative Chernoff bound [2], we have that

Pr

[
s

∑
`=1

χ
` <
√

n

]
≤ Pr

[
s

∑
`=1

χ̃
` <
√

n

]

< Pr

[
s

∑
`=1

χ̃
` < (1/2)(ε/2)s

]
< exp(−εs/16) < 1/10 . (3.1)

This means that with probability at least 9/10, either D(Y `)< ε/2 for some `, in which case we have
D(Yf ,0([n]\ (J(Tf ,0)∪ I)))< ε/2, or |J(Tf ,0)\ I| ≥

√
n .

Proof of Lemma 3.6. Assume, contrary to the claim, that with probability at least 1/6 over the choice of
T (which consist of c1

√
n/ε points selected independently according to D), there is no point in T that is

empty with respect to f and D(Yf ,1(J(Tf ,0)))< ε/(4
√

n). We will show how, using this assumption, it is
possible to prove that there exists a vertex cover C of H f with D(C)≤ ε . By Claim 3.4, this contradicts
the fact that distD( f ,MONM)> ε .
THE CONSTRUCTION OF C. We show how to construct a vertex cover C of H f in three stages. In
the first stage we put in C all empty points, that is, all points in Y/0( f ). By the counter-assumption,
D(Y/0( f )) ≤ 2ε/(c1

√
n). This is true because otherwise, the probability that the sample T does not

contain an empty point is at most (
1− 2ε

c1
√

n

)c1
√

n/ε

< e−2 < 1/6 .

In the second stage we work in iterations. In each iteration ` we add to the cover a subset of points
Y ` ⊆ f−1(1), which is determined by a subset T ` ⊆ {0,1}n. These subsets are determined as follows.
Let I1 = /0, and for ` > 1 let I` = I`−1 ∪ J(T `−1

f ,0 ). We shall think of I` as the subset of representative
indices that have “already been covered” in a sense that will become clear momentarily. Suppose we
apply Claim 3.7 with I = I`. The claim says that with probability at least 9/10 over the choice of T , either
|J(Tf ,0)\ I`| ≥

√
n (that is, there are many “new” representative indices corresponding to points in Tf ,0),

or D(Yf ,0([n]\ (J(Tf ,0)∪ I`)))≤ ε/2 (that is, the total weight of the points whose representative index is
not already in I` or J(Tf ,0) is small). Thus, the probability that neither of the two hold is at most 1/10.

Combining this with our counter-assumption (and taking a union bound), we have that with probability
at least 1/6− 1/10 > 0 over the choice of T : D(Yf ,1(J(Tf ,0))) <

ε

4
√

n (that is, the total weight of the

points y in f−1(1) such that Z(y)∩ J(Tf ,0) 6= /0 is small), and either |J(Tf ,0) \ I`| ≥
√

n or D(Yf ,0([n] \
(J(Tf ,0)∪ I`))) ≤ ε/2. Since this (combined) event occurs with probability greater than 0, there must
exist at least one set T for which it holds. Denote this set by T `, and let Y ` = Yf ,1(J(T `

f ,0)) (so that all
points in Y ` are added to the cover). If D(Yf ,0([n]\ (J(T `

f ,0)∪ I`)))≤ ε/2, then this (second) stage ends,
and in the third stage we add to the cover C all points in Yf ,0([n] \ (J(T `

f ,0)∪ I`)). Otherwise, we set
I`+1 = I`∪ J(T `

f ,0) and continue with the next iteration.
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ESTABLISHING THAT C IS A VERTEX COVER OF H f . Consider any point y ∈ f−1(0) that is contained
in at least one edge in H f . We shall show that either y ∈C, or, for every edge B ∈ H f that contains y,
there is at least one point y′ ∈ B∩ f−1(1) that belongs to C. Since each edge in H f contains some point
y ∈ f−1(0), this implies that C is a vertex cover. Details follow.

If y ∈ Y/0( f ), then it is added to the cover in the first stage. In particular, if f (1n) = 0 (so that H f

contains the edge {1n}), then 1n ∈ Y/0( f ), implying that the edge {1n} is covered. Otherwise (y /∈ Y/0( f )),
we have that y has a representative index j(y) ∈ Z(y). Consider the iterations in the second stage of the
construction of C. If for some iteration ` we have that j(y) ∈ J(T `

f ,0) (where we consider the first iteration
in which this occurs), then the cover contains all points in Yf ,1({ j(y)})⊆ Yf ,1(J(T `

f ,0)) = Y `. Since, by
the definition of H f , each edge in H f that contains y must contain some y′ ∈ f−1(1) such that j(y)∈ Z(y′),
all edges containing y are covered after iteration `. On the other hand, if j(y) /∈ J(T `

f ,0) for every iteration
`, then let `∗ denote the index of the last iteration and consider the third stage. In this stage we add to C
all points in Yf ,0([n]\ (J(T `∗

f ,0)∪ I`
∗
)). But this set consists of those points whose representative index is

not contained in J(T `∗
f ,0)∪ I`

∗
=
⋃`∗

`=1 J(T `
f ,0), and in particular the set contains y, so that y is added to the

cover in the third stage.

BOUNDING THE WEIGHT OF C. The main observation is that in each iteration ` of the second stage
except, possibly, for the last one (`∗), we have that |J(T `

f ,0) \ I`| ≥
√

n. That is, each such iteration
corresponds to a subset of at least

√
n indices in [n], where the different subsets are disjoint. This implies

that `∗ ≤
√

n+1. By the construction of C,

D(C) = D(Y/0( f ))+
`∗

∑
`=1

D
(

Yf ,1(J(T `
f ,0))

)
+D

(
Yf ,0([n]\ (J(T `∗

f ,0)∪ I`
∗
))
)

≤ 2ε

c1
√

n
+(
√

n+1) · ε

4
√

n
+ ε/2 ≤ ε , (3.2)

where the last inequality holds for c1 ≥ 8 (assuming n≥ 4).

Theorem 3.8. Algorithm 2 is a distribution-free 1-sided-error tester for (membership in) MONM. Its
query complexity is O(

√
n logn/ε).

Proof. Consider first the case that f is a monotone monomial. Observe that the tester rejects only if it
finds evidence that f is not a monotone monomial. This evidence is either in the form of two (disjoint)
subsets of indices, Z1 and Z2 such that f (y(Z1)) = f (y(Z2)) = 1 while f (y(Z1∪Z2))) = 0 (found by the
binary search procedure), or it is of the form of an index j and a point y ∈ f−1(1), such that f (ē j) = 0
and j ∈ Z(y). Therefore, the tester never rejects a monotone monomial.

Consider next the case that distD( f ,MONM)> ε . By Lemma 3.6, for a sufficiently large constant
c1 in the Θ(·) notation for T (the first sample), with probability at least 5/6 over the choice of T ,
either there is an empty point in Tf ,0 ⊆ T , or D(Yf ,1(J(Tf ,0))) ≥ ε/(4

√
n). If there is an empty point

in Tf ,0, then the binary search will fail on that point and the tester will reject. On the other hand, if
D(Yf ,1(J(Tf ,0))) ≥ ε/(4

√
n), then, since the size of the second sample, T ′, is c′1

√
n/ε , the probability

that no point y ∈ Yf ,1(J(Tf ,0)) is selected in T ′ is at most (1− ε/(4
√

n))c′1
√

n/ε , which is upper bounded
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by 1/6 for c′1 ≥ 8. But if such a point is selected, then the tester rejects.5 Therefore, the probability that
the tester rejects a function f for which distD( f ,MONM)> ε is at least 2/3.

Finally, the number of points sampled is O(
√

n/ε) since the tester obtains two samples of this size.
Since for each point in the first sample that belongs to f−1(0) the tester performs a binary search, the
query complexity of the tester is O(

√
n logn/ε).

3.4 Disallowing the all-1 function

Our tester as described in Subsection 3.2 works for the class of monotone monomials, MONM, when it
is assumed to contain the “empty” monomial, that is, the all-1 function. Let 1 denote the all-1 function
(over {0,1}n) and let MON′M denote the class of monotone monomials that are a conjunction of at least
one variable. Thus, MON′M = MONM \ {1}. We next show how to augment our tester for MONM

(Algorithm 2) so that it work for MON′M.
First we run Algorithm 2 with the distance parameter ε set to ε/2 and with slightly larger constants

in the sizes of the sample, so that its failure probability is at most 1/6 rather than 1/3. If the tester rejects,
then we reject as well. Otherwise, it is possible that the tester accepted f because distD( f ,1)≤ ε/2 (so
that distD( f ,MONM)≤ ε/2) while distD( f ,MON′M)> ε . We are interested in detecting this (with high
probability) and rejecting f in such a case.

To this end we take an additional sample R of Θ(logn/ε) points, each generated independently
according to D. We then check whether there exists at least one index j ∈ [n] such that y j = 1 for all
points y ∈ R∩ f−1(1). If there is no such index, then we reject, otherwise we accept. We next show that
if distD( f ,1)≤ ε/2 and distD( f ,MON′M)> ε , then this simple procedure rejects f with high constant
probability.

The simple observation is that if distD( f ,1) ≤ ε/2 and distD( f ,MON′M) > ε , then Pry∼D[ f (y) =
1 and y j = 0]≥ ε/2 for every j ∈ [n]. Assume, contrary to the claim, that there exists some index j ∈ [n]
for which

Pr
y∼D

[ f (y) = 1 and y j = 0]< ε/2 .

Since distD( f ,1)≤ ε/2 (so that Pry∼D[ f (y) = 0]≤ ε/2), we have that

Pr
y∼D

[ f (y) = 0 and y j = 1]≤ ε/2 .

Therefore, by flipping the value of f on all points y such that either f (y) = 1 and y j = 0 or f (y) = 0 and
y j = 1 we obtain a monotone monomial (singleton) g such that distD( f ,g)≤ ε , and we have reached a
contradiction.

Finally, if
Pr

y∼D
[ f (y) = 1 and y j = 0]≥ ε/2

5We note that the analysis does not explicitly address the case that Tf ,0 = /0, where the tester accepts (for every T ′)
simply because J(Tf ,0) is empty. What the analysis implies (implicitly) is that the probability that such an event occurs when
distD( f ,MONM)> ε is at most a small constant. It is possible to argue this directly (since if distD( f ,MONM)> ε , then in
particular, f is ε-far with respect to D from the all-1 function, so that the probability that no point in f−1(0) is selected in the
first sample is very small).

THEORY OF COMPUTING, Volume 7 (2011), pp. 155–176 168

http://dx.doi.org/10.4086/toc


SUBLINEAR DISTRIBUTION-FREE TESTING FOR MONOMIALS

for every j ∈ [n], then by taking a union bound over all j ∈ [n] we get the following. With high constant
probability over the choice of a sample of size Θ(logn/ε), for each j ∈ [n], the sample will contain a
point y such that f (y) = 1 and y j = 0.

4 Distribution-free testing of (general) monomials

The high-level structure of the tester for general monomials is similar to the tester for monotone monomi-
als, but several modifications have to be made (and hence the tester and the notions it is based on are
seemingly more complex). In this section we explain what the modifications are and how this affects the
analysis.

Recall that for a point y∈ {0,1}n we let O(y) = { j : y j = 1} and Z(y) = { j : y j = 0}. For a non-empty
set of points Y ⊆ {0,1}n, let O(Y ) =

⋂
y∈Y O(y) and Z(Y ) =

⋂
y∈Y Z(y).

4.1 The violation hypergraph (for general monomials)

A basic observation concerning (general) monomials is that if g is a monomial, then for every subset
{y0,y1, . . . ,yt} such that g(y0) = 0 and g(yi) = 1 for each 1≤ i≤ t, the following holds: There must be at
least one index j ∈ [n] such that either j ∈ O({y1, . . . ,yt}) and y0

j = 0, or j ∈ Z({y1, . . . ,yt}) and y0
j = 1.

This implies that if we have a subset {y0,y1, . . . ,yt} such that g(y0) = 0 and g(yi) = 1 for each 1≤ i≤ t,
and such that O({y1, . . . ,yt})⊆ O(y0) and Z({y1, . . . ,yt})⊆ Z(y0), then we have evidence that g is not a
monomial. This motivates the next (modified) definition of a violation hypergraph.

Definition 4.1 (Violation hypergraph of f (w.r.t. general monomials)). Let H f = (V (H f ),E(H f )) be
the hypergraph whose vertex set, V (H f ) is {0,1}n, and whose edge set, E(H f ), contains all subsets
{y0,y1, . . . ,yt} ⊆ {0,1}n, t ≥ 1, of the following form:

• f (y0) = 0 and f (yi) = 1 for all 1≤ i≤ t.

• O({y1, ...,yt})⊆ O(y0). and Z({y1, ...,yt})⊆ Z(y0).

Observe that the difference between Definition 3.1 and Definition 4.1 is in the additional requirement
that Z({y1, ...,yt})⊆ Z(y0) (as well as the fact that {1n} is not an edge in H f even if f (1n) = 0).

Similarly to Lemma 3.2 here we have the next lemma.

Lemma 4.2. If E(H f ) = /0 then f is a monomial.

Lemma 4.2 follows from the next claim, which is similar to Claim 3.3 (by setting R = {0,1}n).

Claim 4.3. Let R be a subset of {0,1}n and let H f (R) = (R,E(H f (R))) be the sub-hypergraph of H f

where E(H f (R)) consists of all edges in H f that are contained in R. If E(H f (R)) = /0 then there exists
h ∈MON such that h(x) = f (x) for every x ∈ R.

Proof. Based on the values that f assigns to points in R, we next define a monomial h and show that it is
consistent with f on R. If f−1(1)∩R = /0, then we let h be the monomial that is the conjunction of x1 and
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x̄1, so that h is the all-0 function. Since f−1(1)∩R = /0, this monomial is consistent with f on all points
in R.

Otherwise, let R f ,1 = f−1(1)∩R and R f ,0 = f−1(0)∩ R, and let h be the monomial that is the
conjunction of all variables x j such that j ∈O(R f ,1) and all negations of variables x̄ j such that j ∈ Z(R f ,1)
(where if O(R f ,1) and Z(R f ,1) are empty, then h is the all-1 function). We next show that by the premise
of the claim, f (y) = h(y) for all y ∈ {0,1}n∩R.

By the definition of h, for all y ∈ R f ,1, h(y) = 1. To establish that h(y) = 0 for all y ∈ R f ,0, assume
in contradiction that there is a point y0 ∈ R f ,0 such that h(y0) = 1. Since h(y0) = 1 we have (by the
definition of h) that y0

j = 1 for all j ∈ O(R f ,1) and y0
j = 0 for all j ∈ Z(R f ,1). That is, Z(R f ,1) ⊆ Z(y0)

and O(R f ,1)⊆ O(y0). But this means, by the definition of H f (R), that {y0∪R f ,1} is an edge in H f (R)
and we have reached a contradiction.

The next lemma is analogous to Lemma 3.4. Its proof is the same as the proof of Lemma 3.4 except that
the application of Claim 3.3 is replaced by an application of Claim 4.3.

Lemma 4.4. If distD( f ,MON)> ε , then for every vertex cover C of H f we have D(C)> ε .

4.2 The tester for general monomials

For a vector y ∈ {0,1}n, and for an index j ∈ [n], let y¬ j be the same as y except that the jth coordinate in
y is flipped. That is, y¬ j

` = y` for all ` 6= j and y¬ j
j = ȳ j. For a subset I ⊆ [n] let y¬I be the vector y with

each coordinate j ∈ I flipped. That is, y¬I
` = y` for all ` /∈ I and y¬I

` = ȳ` for all ` ∈ I. Let ∆(y,w)⊆ [n] be
the subset of indices j such that y j 6= w j, and note that y = w¬∆ for ∆ = ∆(y,w).

Algorithm 3. Binary Search for General Monomials (Input: y ∈ f−1(0), w ∈ f−1(1))

1. ∆← ∆(y,w);

2. While (|∆| ≥ 2) do

(a) Let (∆1,∆2) be a fixed partition of ∆ where ||∆1|− |∆2|| ≤ 1.
Specifically, ∆1 is the set of the first b|∆|/2c indices in ∆.

(b) If f (w¬∆1) = 0, then ∆← ∆1;

(c) else if f (w¬∆2) = 0, then ∆← ∆2;

(d) else output fail and halt.

3. Output the single index j ∈ ∆;

Figure 3: The binary search procedure for general monomials.

We start by describing the binary search procedure (for general monomials). Its pseudo-code is
given in Algorithm 3 (see Figure 3). The procedure receives as input two points w,y ∈ {0,1}n such that
f (w) = 1 and f (y) = 0 and outputs an index j ∈ [n] such that y j 6= w j and such that f (w¬ j) = 0. If f is a
monomial, then at least one such index must exist. Note that if w = 1n, then the output of the search is as
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specified by the binary search procedure for monotone monomials (Algorithm 1). In fact, Algorithm 1
itself (and not only its output specification) is essentially the same as Algorithm 3 for the special case
of w = 1n. (Since f (1n) must equal 1 if f is a monotone monomial, we can think of the binary search
procedure for monotone monomials as implicitly working under this assumption.)

The search is performed by repeatedly partitioning a set of indices ∆, starting with ∆ = ∆(y,w), into
two parts ∆1 and ∆2 of (almost) equal size, and querying f on the two points, w¬∆1 and w¬∆2 . If f
returns 1 for both, then the search fails. Otherwise, the search continues with ∆i for which f (w¬∆i) = 0,
unless |∆i| = 1, in which case the desired index is found. If the search fails, then we have evidence
that f is not a monomial. Namely, we have three points, w¬∆1 , w¬∆2 and w¬∆, where ∆ = ∆1∪∆2, such
that f (w¬∆) = 0 and f (w¬∆1) = f (w¬∆2) = 1. Since w¬∆1 and w¬∆2 disagree on all coordinates in ∆,
and all three points agree on all coordinates in [n] \∆, we have that Z({w¬∆1 ,w¬∆2}) ⊆ Z(w¬∆) and
O({w¬∆1 ,w¬∆2})⊆ O(w¬∆), so that the three points constitute an edge in H f .

Algorithm 4. General Monomials Test

1. Obtain a sample S of Θ(1/ε) points, each generated independently according to D.

2. If S f ,1 = /0, then output accept and halt. Otherwise, arbitrarily select a point w ∈ S f ,1.

3. Obtain a sample T of Θ(
√

n/ε) points, each generated independently according to D.

4. For each point y ∈ Tf ,0 run the binary search procedure (Algorithm 3) on w,y.

5. If the binary search fails for any of the points, then output reject and halt. Otherwise, for each
y ∈ Tf ,0 let jw(y) be the index returned for y, and let Jw(Tf ,0) = { jw(y) : y ∈ Tf ,0}.

6. Obtain another sample T ′ of size Θ(
√

n/ε) (generated independently according to D).

7. If there is a point y ∈ T ′f ,1 and an index j ∈ Jw(Tf ,0) such that y j 6= w j, then output reject,
otherwise output accept.

Figure 4: The tester for general monomials.

The tester for general monomials starts by obtaining a sample of Θ(1/ε) points, each generated
independently according to D. The tester arbitrarily selects a point w in this sample that belongs to
f−1(1). If no such point exists, then the tester simply accepts f (and halts). Otherwise, this point serves
as as a kind of reference point. As in the case of the binary search procedure, the tester for monotone
monomials (Algorithm 2) is essentially the same as the tester for general monomials (Algorithm 4) with
w (implicitly) set to be 1n.

Next, the tester obtains a sample of Θ(
√

n/ε) points (each generated independently according to D).
For each point y in the sample that belongs to f−1(0), the tester performs a binary search on the pair
w,y. If any search fails, then the tester rejects (recall that in such a case it has evidence that f is not a
monomial). Otherwise, for each point y in the sample that belongs to f−1(0), the tester has an index,
jw(y) ∈ ∆(y,w), such that f (w¬ jw(y)) = 0. Let the subset of all these indices be denoted by J. Note that
by the construction of J, if f is a monomial, then for every j ∈ J, if w j = 1, then the variable x j must
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belong to the conjunction defining f and if w j = 0, then x̄ j must belong to the conjunction.
The tester then takes an additional sample, also of size Θ(

√
n/ε), and checks whether there exists

a point y in the sample that belongs to f−1(1) and an index j ∈ J such that y j 6= w j. In such a case
the tester has evidence that f is not a monomial. Viewing this in terms of the hypergraph H f , we
have that f (w¬ j) = 0, f (y) = f (w) = 1, and both Z({y,w})⊆ Z(w¬ j) and O({y,w})⊆ O(w¬ j), so that
{w¬ j,y,w} ∈ E(H f ). The pseudo-code of the tester is given in Figure 4.

4.3 The analysis of the tester for general monomials

We start by stating a very simple claim. This claim explains why the tester can accept f in case it sees no
point in the first sample that belongs to f−1(1). It follows from the fact that every monomial that includes
a variable and its negation gives a value of 0 to all domain points.

Claim 4.5. If D( f−1(1))≤ ε (that is, f is ε-close to the all-0 function), then distD( f ,MON)≤ ε .

Since the initial sample S consists of Θ(1/ε) points (that are generated independently according to D),
we get the next corollary.

Corollary 4.6. If distD( f ,MON) > ε , then the probability that Algorithm 4 accepts because S f ,1 is
empty is exp(−c) where c is the constant in the Θ(·) notation for S.

We next modify Definition 3.5.

Definition 4.7 (Empty points and representative indices (for general monomials)). For a point y ∈ f−1(0)
and a point w ∈ f−1(1), we say that y is empty with respect to w (and f ) if the binary search procedure
(Algorithm 3) fails when given w and y as input. We denote the set of empty points with respect to w (and
f ) by Y w

/0 ( f ). If y is not empty with respect to w (and f ), then we let jw(y) ∈ ∆(y,w) denote the index that
the binary search procedure returns. We refer to this index as the representative index for y with respect
to w. If y ∈ Y w

/0 ( f ), then we define jw(y) to be 0.

Using the notation introduced in Algorithm 4,

Jw(Tf ,0) = { jw(y) : y ∈ Tf ,0 \Y w
/0 ( f )} .

For a subset of indices J ⊆ [n], let Y w
f ,1(J) denote the set of points y ∈ f−1(1) such that y j 6= w j for some

j ∈ J, and let Y w
f ,0(J) denote the set of points y ∈ f−1(0) for which jw(y) ∈ J. Lemma 3.6 and Claim 3.7

are adapted as follows.

Lemma 4.8. Suppose distD( f ,MON) > ε and consider any fixed point w ∈ f−1(1) and a sample T
of c1
√

n/ε points generated independently according to D. For a sufficiently large constant c1, with
probability at least 5/6 over the choice of T , either Tf ,0 contains an empty point with respect to w (and
f ) or D(Y w

f ,1(J(Tf ,0)))≥ ε/(4
√

n).

Claim 4.9. Let I be any fixed subset of [n], let w be any fixed point in f−1(1), and consider a sample T
of s = c1

√
n/ε points generated independently according to D. For a sufficiently large constant c1, with

probability at least 9/10 over the choice of T , either

|Jw(Tf ,0)\ I| ≥
√

n or D(Y w
f ,0([n]\ (Jw(Tf ,0)∪ I)))≤ ε/2 .
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The proof of Claim 4.9 is exactly the same as the proof of Claim 3.7 except that each instance of
J(Tf ,0) needs to be replaced by Jw(Tf ,0), and each instance of the form Yf ,0(·) needs to be replaced by
Y w

f ,0(·). The proof of Lemma 4.8 is also essentially the same as the proof of Lemma 3.6. However, there
is one subtle difference (due to the difference in the definitions of the violation hypergraphs for monotone
and general monomials) and hence we only give the details of the difference.

Proof of Lemma 4.8. The subset C is constructed in the same manner as in the proof of Lemma 3.6
except that Y/0( f ) is replaced by Y w

/0 ( f ), each instance of Yf ,1(·) is replaced by Y w
f ,1(·), the application of

Claim 3.7 is replaced by an application of Claim 4.9 (and J(Tf ,0) and Yf ,0(·) are replaced by Jw(Tf ,0) and
Y w

f ,0(·), respectively, as in the proof of Claim 4.9). The argument bounding the weight of C is also the
same as in the proof of Lemma 3.6, and so it only remains to give the details establishing that C is indeed
a vertex cover of H f (as defined in Definition 4.1).

Consider any point y ∈ f−1(0) that is contained in at least one edge in H f . If y ∈ Y w
/0 ( f ), then it is

added to the cover in the first stage. Otherwise, y has a representative index jw(y) ∈ ∆(y,w). Consider the
iterations in the second stage of the construction of C. If for some iteration ` we have that jw(y)∈ Jw(T `

f ,0),
then the cover contains all points in Y w

f ,1({ jw(y)})⊆ Y w
f ,1(J

w(T `
f ,0)). By the definition of H f , each edge

in H f that contains y must contain some y′ ∈ f−1(1) such that y′jw(y) = y jw(y) (otherwise, for some edge
B, it would not be true that Z(B \ {y}) ⊆ Z(y) and O(B \ {y}) ⊆ O(y)). But for each such y′, since
y jw(y) 6= w jw(y), we have that y′jw(y) 6= w jw(y), and so y′ ∈ Y w

f ,1({ jw(y)}). Therefore, all edges containing y
are covered after iteration `. On the other hand, if jw(y) /∈ Jw(T `

f ,0) for every iteration `, then y is added
to C in the third stage (where the argument is as in the proof of Lemma 3.6).

Lemma 4.8 together with Corollary 4.6 imply the next theorem.

Theorem 4.10. Algorithm 4 is a distribution-free 1-sided-error tester for (membership in) MON. Its
query complexity is O(

√
n logn/ε).

The proof of Theorem 4.10 is essentially the same as the proof of Theorem 3.8, where the application
of Lemma 3.6 is replaces by an application of Lemma 4.8, and the probability that the tester erroneously
accepts due to S1, f = /0 is taken into account (using Corollary 4.6).

4.4 Disallowing the all-1 function

Let MON′ denote the class of monomials that are a conjunction of at least one literal, so that MON′ =
MON \{1} (where 1 is the all-1 function). It is possible to augment our tester for MON (Algorithm 4)
so that it work for MON′ in a very similar manner to what was shown for monotone monomials in
Subsection 3.4. The only difference is that when we take the additional sample R, we check whether there
exists at least one index j ∈ [n] such that for some b ∈ {0,1}, y j = b for all points y ∈ S∩ f−1(1). The
modification in the analysis is that we show that if distD( f ,1)≤ ε/2 and distD( f ,MON′)> ε , then

Pr
y∼D

[ f (y) = 1 and y j = b]≥ ε/2

for every j ∈ [n] and b ∈ {0,1}.

THEORY OF COMPUTING, Volume 7 (2011), pp. 155–176 173

http://dx.doi.org/10.4086/toc


ELYA DOLEV AND DANA RON

Acknowledgements

We would like to thank several anonymous reviewers of this paper for their helpful comments. In
particular, we would like to thank a reviewer of the extended abstract version of this paper for suggesting
to simplify the proof of Lemma 3.4.

References

[1] MANUEL BLUM, MICHAEL LUBY, AND RONITT RUBINFELD: Self-testing/correcting with appli-
cations to numerical problems. J. Comput. System Sci., 47(3):549–595, 1993. [doi:10.1016/0022-
0000(93)90044-W] 156

[2] H. CHERNOFF: A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations. Ann. Math. Statist., 23(4):493–507, 1952. [doi:10.1214/aoms/1177729330] 166

[3] ILIAS DIAKONIKOLAS, HOMIN K. LEE, KEVIN MATULEF, KRZYSZTOF ONAK, RONITT RUBIN-
FELD, ROCCO A. SERVEDIO, AND ANDREW WAN: Testing for concise representations. In Proc.
48th FOCS, pp. 549–557. IEEE Comp. Soc. Press, 2007. [doi:10.1109/FOCS.2007.32] 156, 158

[4] YEVGENIY DODIS, ODED GOLDREICH, ERIC LEHMAN, SOFYA RASKHODNIKOVA, DANA RON,
AND ALEX SAMORODNITSKY: Improved testing algorithms for monotonocity. In Proc. 3rd Intern.
Workshop Random. and Approx. Tech. Comput. Sci. (RANDOM), number 1671 in Lecture Notes in
Comput. Sci., pp. 97–108. Springer, 1999. [doi:10.1007/978-3-540-48413-4 10] 156, 158
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