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Abstract: Although a quantum state requires exponentially many classical bits to de-
scribe, the laws of quantum mechanics impose severe restrictions on how that state can be
accessed. This paper shows in three settings that quantum messages have only limited
advantages over classical ones.

First, we show thaBQP /gpoly C PP /poly, whereBQP /qpoly is the class of problems
solvable in quantum polynomial time, given a polynomial-size “quantum advice state” that
depends only on the input length. This resolves a question of Buhrman, and means that we
should not hope for an unrelativized separation between quantum and classical advice. Un-
derlying our complexity result is a general new relation between deterministic and quantum
one-way communication complexities, which applies to partial as well as total functions.

Second, we construct an oracle relative to whitdh ¢ BQP /qpoly. To do so, we
use the polynomial method to give the first correct proof dfiract product theorenfor
guantum search. This theorem has other applications; for example, it can be used to fix a
result of Klauck about quantum time-space tradeoffs for sorting.

Third, we introduce a newrace distance methofibr proving lower bounds on quan-
tum one-way communication complexity. Using this method, we obtain optimal quantum
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lower bounds for two problems of Ambainis, for which no nontrivial lower bounds were
previously known even for classical randomized protocols.

A preliminary version of this paper appeared in the 2004 Conference on Computational
Complexity (CCC).

1 Introduction

How many classical bits can “really” be encoded intqubits? Is itn, because of Holevo’s Theorem
[19]; 2n, because of dense quantum codidg][and quantum teleportatior®]; exponentially many,
because of quantum fingerprinting]; or infinitely many, because amplitudes are continuous? The
best general answer to this question is probatlythe Zen word that “unasks” a questibn.

To a computer scientist, however, it is natural to formalize the question in terquaafum one-way
communication complexify{g, 12, 20, 40]. The setting is as follows: Alice has ambit stringx, Bob
has anm-bit stringy, and together they wish to evaluattéx,y) wheref : {0,1}" x {0,1}™ — {0,1} is
a Boolean function. After examining her ingts Xz ... Xn, Alice can send a single quantum message
px to Bob, whereupon Bob, after examining his ingut y1 ... ym, can choose some basis in which to
measurey. He must then output a claimed value fofx,y). We are interested in how long Alice’s
message needs to be, for Bob to succeed with high probability or, sipair. Ideally the length will
be much smaller than if Alice had to send a classical message.

Communication complexity questions have been intensively studied in theoretical computer science
(see the book of Kushilevitz and Nisad for example). In both the classical and quantum cases,
though, most attention has focused two-way communication, meaning that Alice and Bob get to
send messages back and forth. We believe that the study of one-way quantum communication presents
two main advantages. First, many open problems about two-way communication look gruesomely
difficult—for example, are the randomized and quantum communication complexities of every total
Boolean function polynomially related? We might gain insight into these problems by tackling their
one-way analogues first. And second, because of its greater simplicity, the one-way model more directly
addresses our opening question: how much “useful stuff” can be packed into a quantum state? Thus,
results on one-way communication fall into the quantum information theory tradition initiated by Holevo
[19] and others, as much as the communication complexity tradition initiated by3&ho [

Related to quantum one-way communication is the notioguaintum advice As pointed out by
Nielsen and Chuan@B, p.203], there is no compelling physical reason to assume that the starting state
of a quantum computer is a computational basis state:

[W]e know that many systems in Nature ‘prefer’ to sit in highly entangled states of many
systems; might it be possible to exploit this preference to obtain extra computational power?

1Anothermuworthy question is, “Where does the power of quantum computing come from? Superposition? Interference?
The large size of Hilbert space?”

20ne might object that the starting state is itself the outcome of some computational process, which began no earlier than
the Big Bang. However, (1) for all we know highly entangled states were created in the Big Bang, and (2) 14 billion years is
along time.
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It might be that having access to certain states allows particular computations to be done
much more easily than if we are constrained to start in the computational basis.

One way to interpret Nielsen and Chuang’s provocative question is as follows. Suppose we could re-
quest thébest possiblstarting state for a quantum computer, knowing the language to be decided and the
input lengthn but not knowing the input itseff. Denote the class of languages that we could then decide
by BQP/gpoly—meaning quantum polynomial time, given an arbitrarily-entangled but polynomial-
size quantum advice state.How powerful is this class? IBQP/qpoly contained (for example) the
NP-complete problems, then we would need to rethink our most basic assumptions about the power
of quantum computing. We will see later that quantum advice is closely related to quantum one-way
communication, since we can think of an advice state as a one-way message sent to an algorithm by a
benevolent “advisor.”

This paper is about tHamitationsof quantum advice and one-way communication. It presents three
contributions which are basically independent of one another.

First, Section3 shows thaD? (f ( Q% IogQ2 ) for any Boolean functiorf, partial or
total. HereD!(f) is deterministlc one way communication complexi®} (f) is bounded-error one-
way quantum communication complexity, amds the length of Bob'’s input. Intuitively, whenever the
set of Bob’s possible inputs is not too large, Alice can send him a short classical message that lets him
learn the outcome of any measurement he would have wanted to make on the quantum meds&e
interesting that a slightly tighter bound for total functionBX{ f) = O (m@Q} (f))—follows easily from
a result of Klauck 20] together with a lemma of Saue?4] about VC-dimension. However, the proof
of the latter bound is highly honconstructive, and seems to fail for pdrtial

Using our communication complexity result,3®ction3.1we show thaBQP /qpoly C PP /poly—
in other wordsBQP with polynomial-size quantum advice can be simulate®lfrwith polynomial-size
classical advic&. This resolves a question of Harry Buhrman (personal communication), who asked
whether quantum advice can be simulatedriy classical complexity class with short classical advice.

A corollary of our containment is that we cannot hope to show an unrelativized separation between
qguantum and classical advice (that is, tB&P /poly # BQP/qpoly), without also showing tha®P
does not have polynomial-size circuits.

What makes this result surprising is that, in the minds of many computer scientists, a quantum
state is basically an exponentially long vector. Indeed, this belief seems to fuel skepticism of quantum
computing (see GoldreichLf] for example). But given an exponentially long advice string, even a
classical computer could decide any language whatsoever. So one might imdgaig theat quantum
advice would let us solve problems that are not even recursively enumerable given classical advice of

31f we knew the input, we would simply request a starting state that contains the right answer!

4BQP,/gpoly might remind readers of a better-studied class callstA (Quantum Merlin-Arthur). But there are two key
differences: first, advice can be trusted while proofs cannot; second, proofs can be tailored to a particular input while advice
cannot.

SHere PP is Probabilistic Polynomial-Time, or the class of languages for which there exists a polynomial-time classical
randomized algorithm that accepts with probability greater th@nifland only if an inputx is in the language. Also, given
a complexity clas€, the clas<C/poly consists of all languages decidable b¢ aachine, given a polynomial-size classical
advice string that depends only on the input length. See www.complexityzoo.com for more information about standard
complexity classes mentioned in this paper.
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a similar size! The failure of this fixge intuition supports the view that a quantum superposition over
n-bit strings is “more similar” to a probability distribution ovethit strings than to a"2bit string.

Our second contribution, itsection4, is an oracle relative to whiclNP is not contained in
BQP/qpoly. Underlying this oracle separation is the first correct proof diract product theorem
for quantum search. Given aftitem database witK marked items, the direct product theorem says
that if a quantum algorithm makcas(m) gueries, then the probability that the algorithm findskall
of the marked items decreases exponentiallil inNotice that such a result does not follow from any
existing quantum lower bound. Earlier KlaucK] claimed a weaker direct product theorem, based on
the hybrid method of Bennett et alg][ in a paper on quantum time-space tradeoffs for sorting. Un-
fortunately, Klauck’s proof contained a bug. Our proof uses the polynomial method of Beals#®t al. [
with the novel twist that we examine dligherderivatives of a polynomial (not just the first derivative).
Our proof has already been improved by Klauélpalek, and de Wolf42], who were able to recover
and even extend Klauck’s original results about quantum sorting.

Our final contribution, inSection5, is a newtrace distance methofbr proving lower bounds on
guantum one-way communication complexity. Previously there was only one basic lower bound tech-
nique: the VC-dimension method of KlaucR(], which relied on lower bounds for quantum random
access codes due to Ambainis et &l.dnd Nayak 27]. Using VC-dimension one can show, for exam-
ple, thatQ} (DISJ) = Q (n), where thedisjointness functio®ISJ :{0,1}" x {0,1}" — {0,1} is defined
by DISJ(x,y) =1ifand only ifxy; =0 for alli € {1,...,n}.

For some problems, however, the VC-dimension method yields no nontrivial quantum lower bound.
Seeking to make this point vividly, Ambainis posed the following problem. Alice is given two elements
x,y of a finite fieldFF, (wherep is prime); Bob is given another two elememtsd c F,. Bob’s goal
is to output 1 ify = ax+ b(modp) and O otherwise. For this problem, the VC-dimension method
yields no randomizedr quantum lower bound better than constant. On the other hand, the well-known
fingerprinting protocol for the equality functio®]] seems to fail for Ambainis’ problem, because of
the interplay between addition and multiplication. So it is natural to conjecture that the randomized
and even quantum one-way complexities @r¢og p)—that is, that no nontrivial protocol exists for this
problem.

Ambainis posed a second problem in the same spirit. Here Alice is givefil,...,N}, Bob is
giveny € {1,...,N}, and both players know a subset {1,...,N}. Bob’s goal is to decide whether
X—Yy € Swhere subtraction is modul. The conjecture is that Bis chosen uniformly at random with
|S| abouty/N, then with high probability the randomized and quantum one-way complexities are both
O (logN).

Using our trace distance method, we are able to show optimal quantum lower bounds for both of
Ambainis’ problems. Previously, no nontrivial lower bounds were known even for randomized proto-
cols. The key idea is to consider two probability distributions over Alice’s quantum mepgagdehe
first distribution corresponds tochosen uniformly at random; the second corresponastmsen uni-
formly conditioned onf (x,y) = 1. These distributions give rise to two mixed stgpeand py, which
Bob must be able to distinguish with non-negligible bias assuming he can evélpatg. We then
show an upper bound on the trace distafioe- py||,., which implies that Bob cannot distinguish the
distributions.

Theorem 5.4gives a very general condition under which our trace distance method works; Corollar-
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ies5.2and5.3then show that the condition is satisfied for Ambainis’ two problems. Besides showing
a significant limitation of the VC-dimension method, we hope our new method is a non-negligible step
towards proving thalR} (f) = O (Q4(f)) for all total Boolean functions, whereR} ( f) is randomized
one-way complexity. We conclude 8ection6 with some open problems.

This paper is a moderately revised version of an extended abstract that appeared in CCZ.2004 [
The proofs of Theorem3.4, 3.5, 5.1, 5.2, and5.4 have been written out in more detail; and discussions
have been added to Sectichand3.1, about the group membership problem and the d?&¥3/qpoly
respectively. Also, an error has been fixed in Sectlonthe direct product theorem ir2] based on
Bernstein’s inequality is incorrect. Fortunately, the easier version based on V. A. Markov’s inequality is
still perfectly sufficient to showlP ¢ BQP /qpoly relative to an oracle; and in any case, the Bernstein’s
version has been superseded by the results of Kl&plek, and de WolfZ2].

2 Preliminaries

This section reviews basic definitions and results about quantum one-way communicatiec{in
tion 2.1) and quantum advice (iBection2.2); thenSection2.3 proves a quantum information lemma
that will be used throughout the paper.

2.1 Quantum One-Way Communication

Following standard conventions, we denotey(f) the deterministic one-way complexity df or
the minimum number of bits that Alice must send if her message is a functirn éfso, R%(f), the
bounded-error randomized one-way complexity, is the minirkwuch that for every,y, if Alice sends
Bob ak-bit message drawn from some distributidr, then Bob can output a kétsuch that= f (x,y)
with probability at least 23. (The subscript 2 means that the error is two-sided.) The zero-error
randomized complexitR} ( f) is similar, except that Bob's answer can never be wrong: he must output
f (x,y) with probability at least 12 and otherwise declare failure.
The bounded-error quantum one-way compleg#( f) is the minimumk such that, if Alice sends
Bob a mixed stat@y of k qubits, there exists a joint measuremenpgfindy enabling Bob to output
ana such thata = f (x,y) with probability at least 23. The zero-error and exact complexiti@§( f)
andQt (f) are defined analogously. Requiring Alice’s message to be a pure state would increase these
complexities by at most a factor of 2, since by Kraus’ Theorem, e«gybit mixed state can be realized
as half of a R-qubit pure state. (Wintel[7] has shown that this factor of 2 is tight.) See Klau2Kj[
for more detailed definitions of quantum and classical one-way communication complexity measures.
It is immediate thaD! (f) > RY(f) > Ri(f) > Q3(f), thatR}(f) > Q§(f) > Q3(f), and that
DY(f) > QL (f). Also, for total f, Duris et al. L4 showed thaR}(f) = © (D*(f)), while Klauck
[20] showed thatQt (f) = D (f) and thatQ}(f) = © (D(f)). In other words, randomized and
guantum messages yield no improvement for total functions if we are unwilling to tolerate a bounded
probability of error. This remains true even if Alice and Bob share arbitrarily many EPR @éjrsAs
is often the case, the situation is dramatically different for partial functions: there it is easy to see that
R§(f) can be constant even thougH (f) = Q(n): let f (x,y) = 1 if Xay1 + -+ 4 Xq/2¥n/2 > n/4 and
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Xn/241Yn/2¢1+ -+ XnYn = 0andf (x,y) = 0 if Xay1 + -+ +Xn/2¥n/2 = 0 andXn 21 1Yn/2 11+ - +XnYn >
n/4, promised that one of these is the case.

Moreover, Bar-Yossef, Jayram, and Kerenidifave almostshown thatQt () can be exponen-
tially smaller tharR%(f). In particular, they proved that separation fareéation, meaning a problem
for which Bob has many possible valid outputs. For a partial functidrased on their relation, they
also showed tha®t (f) = ©(logn) whereas} (f) = © (y/n); and they conjectured (but did not prove)
thatR} (f) = ©(y/n).

2.2 Quantum Advice

Informally, BQP /qgpoly is the class of languages decidable in polynomial time on a quantum computer,
given a polynomial-size quantum advice state that depends only on the input length. We now make the
definition more formal.

Definition 2.1. A languagel is in BQP /qpoly if there exists a polynomial-size quantum circuit family
{Cn},>1, and a polynomial-size family of quantum sta{én) }.-.1, such that for alk € {0,1}",

(i) If xe L thenqg(x) > 2/3, whereq(x) is the probability that the first qubit is measured to|be
afterC, is applied to the starting stape) ®|0---0) ® |yn).

(i) If x¢ Ltheng(x) <1/38

The central open question aboBQP /qpoly is whether it equalsBQP/poly, or BQP with
polynomial-sizeclassicaladvice. We do have a candidate for an oracle problem separating the two
classes: thgroup membership probleof Watrous B6], which we describe for completeness. &t
be a black box groupwhose elements are uniquely labeledrblyit strings, and leH,, be a subgroup of
Gn. BothG,, andH, depend only on the input length) so we can assume that a nonuniform algorithm
knows generating sets for both of them. Given an elemenG, as input, the problem is to decide
whetherx € H.

If Gy is “sufficiently nonabelian” andH,, is exponentially large, we do not know how to solve this
problem inBQP or evenBQP /poly. On the other hand, we can solve itBQP /qpoly as follows. Let
our quantum advice state be an equal superposition over all elemétits of

1
|Hn) = )
VIHnl y&R,
We can transforniH,) into
1
XHn) = ——= > [xy)
VIHnl y&R,

6if the starting state i) ®|0---0) ® |@) for some|@) # |yn), then we do not require the acceptance probability to lie in
[0,1/3]U[2/3,1]. Therefore, what we caBQP /qpoly corresponds to what Nishimura and Yamakad@j tall BQP /*Qpoly.
Also, it does not matter whether the circuit fam{l@n },,~1 is uniform, since we are giving it advice anyway.

7In other words, we have a quantum oracle available that giyer Gn outputsxy (i.e. exclusive-OR’xy into an answer
register), and that givene Gy, outputsx 1.
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by mappingly) |0) to |y) |xy) to \y@ x~1xy) [xy) = |0) |xy) for eachy € Hy. Our algorithm will first pre-
pare the stat€/0) |Hn) +|1) [xHq)) /v/2, then apply a Hadamard gate to the first qubit, and finally mea-
sure the first qubit in the standard basis, in order to distinguish the ¢dges |xH,) and(H,|xH,) =0

with constant bias. The first case occurs whena&weH,, and the second occurs whenexef Hj,.

Although the group membership problem provides intriguing evidence for the power of quantum
advice, we have no idea how to show that it is not also solvable using classical advice. Indeed, apart
from a result of Nishimura and Yamakand(] that EESPACE ¢ BQP /qpoly, essentially nothing was
known about the clas3QP /qpoly before the present work.

2.3 The Almost As Good As New Lemma

The following simple lemma, which was implicit i], is used three times in this paper—in Theorems
3.4, 3.5 and4.7. It says that, if the outcome of measuring a quantum gtateuld be predicted with
near-certainty given knowledge pf, then measuring will damage it only slightly. Recall that the
trace distancdlp — o||,, between two mixed statgs and o equals% YilAil, wherelq,..., Ay are the
eigenvalues op —o.

Lemma 2.2. Suppose &-outcome measurement of a mixed sjatgelds outcom® with probability
1—e¢e. Then after the measurement, we can recover a gtatach that||p — p||,, < €. This is true
even if the measurement is a POVM (that is, involves arbitrarily many ancilla qubits).

Proof. Let|y) be a purification of the entire systep §lus ancilla). We can represent any measurement
as a unitaryJ applied to|y), followed by a 1-qubit measurement. Leb) and|¢@;) be the two possible
pure states after the measurement; tijig:) = 0 andU |y) = a |@o) + B |¢1) for somea, B such that
|a|? =1—€ and|B|? = e. Writing the measurement result as= (1— &) |go) (@o| + € |@1) (@], it is
easy to show that

o —Uly) (U, = Ve(l-e).
So applying 1 to o,
lU~oU = |y) (v, = Ve(1-e).

Let p be the restriction of) ~oU to the original qubits op. Theorem 9.2 of Nielsen and Chuar®§][
shows that tracing out a subsystem never increases trace distafipe; $d|,, < /€ (1—¢) < e. O

3 Simulating Quantum Messages

Let f:{0,1}" x {0,1}™ — {0,1} be a Boolean function. In this section we first combine existing
results to obtain the relatiob! (f) = O (mQ}(f)) for total f, and then prove using a new method that
DY (f) =0O(mQ(f)logQ3(f)) for all f (partial or total).

Deflne thecommunication matrix Mto be a 2 x 2™ matrix with f (x,y) in the X" row andy"
column. Then letting rowsf ) be the number of distinct rows M+, the following is immediate.
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Proposition 3.1. For total f,

D*(f) = [log,rows(f)],
Qi (f) =Q(loglogrows( f)).

Also, let the VC-dimension VCf) equal the maximurk for which there exists a"«x k submatrix
Mg of M¢ with rows(g) = 2%. Then Klauck R0] observed the following, based on a lower bound for
guantum random access codes due to Nagak [

Proposition 3.2 (Klauck). Q3 (f) = Q(VC(f)) for total f.

Now let cols(f) be the number of distinct columns W¢. ThenTheorem 3.%ields the following
general lower bound:

Corollary 3.3. D*(f) = O(m@Q}(f)) for total f, where m is the size of Bob's input.

Proof. It follows from a lemma of SaueBf] that

rows(f) < % <OIS ><cols(f)VC(f)”.

Hence VQf) > 10gcqq 1) rows(f) — 1, so

QG (f)=Q(vC(f)) = Q<m>

a(P1).

In particular,D! (f) andQ3 () are polynomially related for totdl, whenever Bob’s input is polyno-
mially smaller than Alice’s, and Alice’s input is not “padded.” More formaly,(f) = O (Q3(f)¥/(1-9)
wheneverm = O(n®) for somec < 1 and rowgf) = 2" (i.e. all rows ofM; are dlstlnct) For then
D!(f) =nby Theorem 3.1andQ} (f) = Q (D*(f) /n®) = Q (n'~¢) by Corollary 3.3

We now give a new method for replacing quantum messages by classical ones when Bob’s
input is small. AIthough the best bound we know how to obtain with this metdt) =

O (mQ(f)logQ} (f))—is slightly weaker than thB* (f) = O (mQ(f)) of Corollary 3.3 our method
works forpartial Boolean functions as well as total ones. It also yields a (relatively) efficient procedure
by which Bob can reconstruct Alice’s quantum message, a fact we will expl&eation3.1to show
BQP/qpoly C PP/poly. By contrast, the method based on Sauer's Lemma seems to be nonconstructive.

O

Theorem 3.4.D*(f) = O(mQ (f)logQ}(f)) for all f (partial or total).
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Proof. Let f : D — {0,1} be a partial Boolean function with C {0,1}" x {0,1}™, and for allx €
{0,1}", let Dy = {y € {0,1}™: (x,y) € D}. Suppose Alice can send Bob a quantum state @}hf)
qubits, that enables him to compuitéx,y) for anyy € Dy with error probability at most A3. Then she
can also send him a boosted stateith K = O (Q3 (f)logQ3 (f)) qubits, such that for alf € Dy,

1
R (p)—fxy)l< Wa

whereR, (p) is the probability that some measuremary] yields a ‘1’ outcome when applied m We
can assume for simplicity that is a pure statéy) (y|; as discussed iBection2.1, this increases the
message length by at most a factor of 2.

Let Y be any subset dDy satisfying|Y| < Q%(f)z. Then starting withp, Bob can measurAy|
for eachy € Y in lexicographic order, reusing the same message state again and again but uncomputing
whatever garbage he generates while measuring. pLbe the state after th#" measurement; thus
po=p = |v) (y|. Since the probability that Bob outputs the wrong valud ¢f,y) on any givery is
at most YQ} ()%, Lemma 2.2mplies that

11
Q3 (MY Q)
Since trace distance satisfies the triangle inequality, this in turn implies that
t < 1
QA(F)° ~ Q3(f)*

Now imagine an “ideal scenario” in whighy = p for everyt; that is, the measurements do not damage
p atall. Thenthe maximum bias with which Bob could distinguish the actual from the ideal scenario is

‘w < ! .
Qh(M® ~ Q&(M)

So by the union bound, Bob will outptit(x,y) for everyy € Y simultaneously with probability at least

kd 1
1- - >0.9
Q(H Qa(f) ~

ot = pr-ally <

ot = plly <

HPO_thr+ ot Hp\‘é|—1_thr <

for sufficiently largeQ3 (f).

Now imagine that the communication channel is blocked, so Bob has to guess what message Alice
wants to send him. He does this by using Kxgubit maximally mixed staté in place ofp. We can
write | as

)

1 &
I= 27121\Wj><ll’j
where|y1),..., |y ) are orthonormal vectors such tha4) = |y). So if Bob uses the same procedure

as above except withinstead ofp, then for anyy C D, with |Y| < Q%(f)z, he will outputf (x,y) for
everyy ¢ Y simultaneously with probability at leasta) 2K.
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We now give the classical simulation of the quantum protocol. Alice’s message to Bob consists
of T <K inputsys,...,yr € Dy, together withf (x,y1),...,f (x,yr).2 Thus the message length is
mT+T = O(mQ%(f)IogQ%(f)). Here are the semantics of Alice’s messagob, suppose you
looped over all y= Dy in lexicographic order; and for each one, guessed that,y) = round(R, (1)),
whereround(p) is1if p>1/2and0if p <1/2. Theny is the first y for which you would guess the
wrong value of fx,y). In general, let{ be the state obtained by starting from | and then measuring
Alyi],...,A[y] in that order, given that the outcomes of the measurements @g1f , ..., f (X, %) re-
spectively. (Note thaf Is not changed by measurements of everylyy up to ¥, only by measurements
of y1,...,¥%.) If you looped over all ¢ Dy in lexicographic order beginning from ythen y, 1 is the
first y you would encounter for whigbund(R, (I)) # f (x,y).”

Given the sequence of's as defined above, it is obvious that Bob can computey) for any
y € Dy. First, if y =y for somet, then he simply output$ (x,y;). Otherwise, let* be the largest
for which y; <y lexicographically. Then Bob prepares a classical description of the Istatevhich
he can do since he knows, ...,y and f (X,y1),..., f (X, yt-)—and then outputs rouri&, (I;-)) as his
claimed value off (x,y). Notice that, although Alice uses her knowledgé&xyfto prepare her message,
Bob does not need to knoy in order to interpret the message. That is why the simulation works for
partial as well as total functions.

But why can we assume that the sequencg’'sfstops atyr for someT < K? Supposé > K; we
will derive a contradiction. LeY = {y1,...,yk:1}. Then|Y| =K +1 < Q}(f)? so we know from
previous reasoning that if Bob starts witland then measures|y1],...,A[yk1] in that order, he will
observef (x,y1),..., f (X,yk+1) Simultaneously with probability at leastd) 2. But by the definition of
Vi, the probability thai\ [y;] yields the correct outcome is at mog®] conditioned om\ [y1], ..., A [yi—1]
having yielded the correct outcomes. Therefo(&,y1),..., f (X,yk+1) are observed simultaneously
with probability at most 12€+1 < 0.9/2%, contradiction. O

3.1 Simulating Quantum Advice

We now apply our new simulation method to upper-bound the power of quantum advice.
Theorem 3.5. BQP/qgpoly C PP/poly.

Proof. For notational convenience, lef (x) = 1 if input x € {0,1}" is in language., andL, (x) = 0
otherwise. Supposk, is computed by 8QP machine using quantum advice of lengifin). We
will give a PP machine that computds, using classical advice of lengt(np(n)logp(n)). Because
of the close connection between advice and one-way communication, the simulation method will be
essentially identical to that dfheorem 3.4

By using a boosted advice state Kn= O(p(n)logp(n)) qubits, a polynomial-time quantum al-
gorithm A can computel, (x) with error probability at most Ap(n)*°. Now the classical advice
to the PP machine consists of < K inputsxy,...,xr € {0,1}", together withL (x1),...,Ln(XT).
Let | be the maximally mixed state dd qubits. Also, letR (p) be the probability thaf outputs
‘1’ on input X, given p as its advice state. Thenq is the lexicographically first input for which

8Strictly speaking, Bob will be able to computéx,y1),..., f (x,yr) for himself givenys,...,yr; he does not need Alice
to tell him thef values.
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round(R (1)) # Ln(X). In general, let; be the state obtained by starting withas the advice and
then runningA on x1,...,% in that order (uncomputing garbage along the way), if we postselect on
A correctly outputtingln (X1),...,Ln(X%). Thenx.1 is the lexicographically firsk > x for which
round(Px (1)) # Ln (X).

Given the classical advice, we can complutéx) as follows: ifx € {x1,...,xt } then outpul, (x).
Otherwise let* be the largesgtfor whichx < x lexicographically, and output rourig (li-)). The proof
that this algorithm works is the same asliheorem 3.4and so is omitted for brevity. All we need to
show is that the algorithm can be implemented i

Adleman, DeMarrais, and Huandj[(see also Forthow and Rogef€]) showed thaBQP C PP, by
using what physicists would call a “Feynman sum-over-histories.” Specificallg, et a polynomial-
size quantum circuit that starts in the all-0 state, and that consists solely of Toffoli and Hadamard gates
(Shi [35] has shown that this gate set is universal). Also,dgbe the amplitude of basis stat®
after all gates irC have been applied. We can writg as a sum of exponentially many contributions,
a; +--- +an, where eacly is a rational real number computable in classical polynomial time. So by
evaluating the sum

N
o) = Z aaj,
i,]=1
putting positive and negative terms on “opposite sides of the ledgBFR”’ machine can check whether
|otz|? > B for any rational constarfi. It follows that aPP machine can also check whether

Z |O‘Z|2> Z |OCZ|2

z:S(2 z: (2

(or equivalently, whether P%;| > Pr[S]) for any classical polynomial-time predicatgsandS,.

Now suppose the circul does the following, in the case¢ {xi,...,xr}. It first prepares the
K-qubit maximally mixed staté (as half of a X-qubit pure state), and then ruAson xy, ..., X, X in
that order, usingd as its advice state. The claimed valued pfxi),...,Ln(X+),Ln(X) are written to
output registers but not measured. Fear{0,1}, let the predicat& (z) hold if and only if basis state
|z) contains the output sequenicg(X1),...,Ln (%+),i. Thenitis not hard to see that

Pr[Si]
B(lp) = ==
x(Ie) PIr[S] + Pr[S]
soR (l+) > 1/2 and hencé&,, (x) = 1 if and only if P{S;] > Pr[S)]. Since the casee {x1,...,x7}Is
trivial, this shows thak,, (x) is computable irPP /poly. O

We make five remarks aboiitheorem 3.5 First, for the same reason th@heorem 3.4works
for partial as well as total functions, we actually obtain the stronger resulPtoatiseBQP /qpoly C
PromisePP /poly, wherePromiseBQP andPromisePP are the promise-problem versionsBRP and
PP respectively.

Second, as pointed out to us by Lance Fortnow, a corollaryieforem 3.5is that we cannot
hope to show an unrelativized separation betwB&® /poly and BQP /qgpoly, without also showing
that PP does not have polynomial-size circuits. FQP /poly # BQP/qgpoly clearly implies that
P/poly # PP/poly. But the latter then implies th&P ¢ P/poly, since assumin@P C P /poly we

THEORY OF COMPUTING, Volume 1 (2005), pp. 1-28 11


http://dx.doi.org/10.4086/toc

SCcOTT AARONSON

could also obtain polynomial-size circuits for a langudge PP /poly by defining a new language
L’ € PP, consisting of all(x,a) pairs such that th€ P machine would accept given advice string.
The reason this works is thBP is a syntactically defined class.

Third, an earlier version of this paper showed tB&P /qpoly C EXP/poly, by using a simulation
in which anEXP machine keeps track of a subspatef the advice Hilbert space to which the ‘true’
advice state must be close. In that simulation, the classical advice specifiesxnputs¢< for which
dim(H) is at least halved; the observation that dir) must be at least 1 by the end then implies that
T <K=0(p(n)logp(n)), meaning that the advice is of polynomial size. The huge improvement from
EXP to PP came solely from working wittmeasurement outcomeasd theirprobabilitiesinstead of
with subspaceand theirdimensions We can compute the former using the same “Feynman sum-over-
histories” that Adleman et al4] used to showBQP C PP, but could not see any way to compute the
latter without explicitly storing and diagonalizing exponentially large matrices.

Fourth, assumingQP /poly # BQP /qpoly, Theorem 3.5s almostthe best result of its kind that one
could hope for, since the only classes known to lie betw@R andPP and not known to equal either
are obscure ones such&#8/PP [16]. Initially the theorem seemed to us to prove something stronger,
namely thatBQP /qpoly C PostBQP/poly. Here PostBQP is the class of languages decidable by
polynomial-size quantum circuits witostselectior-meaning the ability to measure a qubit that has a
nonzero probability of being¢l), and therassumehat the measurement outcome will i¢. Clearly
PostBQP lies somewhere betwedBQP and PP; one can think of it as a quantum analogue of the
classical complexity clasBPP ., [18]. We have since shown, however, tiitastBQP = PP [3].

Fifth, it is clear that Adleman et al. BQP C PP result {] can be extended to show th2QP = PP.
HerePQP is the quantum analogue BP—that is, quantum polynomial time but where the probability
of a correct answer need only be bounded abo\ dather than above/3. A reviewer asked whether
Theorem 3.Xould similarly be extended to show tHa®P /qpoly = PP /poly. The answer is nho—for
indeed PQP /qpoly contains every language whatsoever! To see this, given any furgtiof0, 1}" —
{0,1}, let our quantum advice state be

1
[yhn) = o2 Z %) |Ln (X)) -
x€{0,1}"

Then aPQP algorithm to computé, is as follows: given an input € {0,1}", first measuréys,) in the
standard basis. k) |L,(x)) is observed, outplit, (x); otherwise output a uniform random bit.

4 Oracle Limitations

Can quantum computers solM&-complete problems in polynomial time? In the early days of quantum
computing, Bennett et al.8] gave an oracle relative to whidiP ¢ BQP, providing what is still the

best evidence we have that the answer is no. Itis easy to extend Bennett et al.'s result to give an oracle
relative to whichNP ¢ BQP/poly; that is,NP is hard even for nonuniform quantum algorithms. But
when we try to showNP ¢ BQP /gpoly relative to an oracle, a new difficulty arises: even if the oracle
encodes 2 exponentially hard search problems for each input lemgtihhe quantum advice, being an
“exponentially large object” itself, might somehow encode information abouf git@lems. We need
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to argue that even if so, only a miniscule fraction of that information can be extracted by measuring the
advice.

How does one prove such a statement? As it turns out, the task can be reduced to pdirdgng a
product theorenfor quantum search. This is a theorem that in its weakest form says the following:
givenN items,K of which are marked, if we lack enough time to find ewaremarked item, then the
probability of finding allK items decreases exponentiallykn For intuitively, suppose there were a
guantum advice state that let us efficiently find any on& gharked items. Then by “guessing” the
advice (i.e. replacing it by a maximally mixed state), and then using the guessed advice multiple times,
we could efficiently find alK of the items with a success probability that our direct product theorem
shows is impossible. This reduction is formalizedimeorem 4.7

But what about the direct product theorem itself? It seems like it should be trivial to prove—for
surely there are no devious correlations by which success in finding one marked item leads to success
in finding all the others! So it is surprising that even a weak direct product theorem eluded proof for
years. In 2001, KlauckZl] gave an attempted proof using the hybrid method of Bennett et3hl. |
His motivation was to show a limitation of space-bounded quantum sorting algorithms. Unfortunately,
Klauck’s proof contained a bud).

In this section we give the first correct proof of a direct product theorem, based on the polynomial
method of Beals et al.7]. Besides showing thalP ¢ BQP /qpoly relative to an oracle, our result can
be used to recover the claims made2d][about the hardness of quantum sorting (see KlaSgialek,
and de Wolf p2] for details). We expect the result to have other applications as well.

We will need the following lemma of Beals et al7]] which builds on ideas due to Minsky and
Papert 6] and Nisan and Szeged29.

Lemma 4.1 (Beals et al.).Suppose a quantum algorithm makes T queries to an oracle striag X
{0, 1}N, and accepts with probability &). Then there exists a real polynomial p, of degree at most
2T, such that

p(i) = EX AX)]

for all integers i€ {0,...,N}, where|X| denotes the Hamming weight of X.

Lemma 4.limplies that, to lower-bound the number of queriesnade by a quantum algorithm,
it suffices to lower-bound deg), wherep is a real polynomial representing the algorithm’s expected
acceptance probability. As an example, any quantum algorithm that computes the OR fundtibitson
with success probability at least2, yields a polynomiap such thatp(0) € [0,1/3] andp(i) € [2/3,1]
forallintegerd € {1,...,N}. Tolower-bound the degree of such a polynomial, one can use an inequality
proved by A. A. Markov in 1890 ¢4]; see also 32)):

Theorem 4.2 (A. A. Markov). Given a real polynomial p and constantNO, let r©® = maXon [P (X)]
and rY) = maxcon [P/ (X)|. Then

Nr®
2r(0)

deg(p) >

9Specifically, the last sentence in the proof of Lemma 52it] [“Clearly this probability is at leasty (px — o)”) is not
justified by what precedes it.
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Theorem 4.2)eals with the entire rand®, N|, whereas in our setting(x) is constrained only at the
integer pointx € {0,...,N}. But as shown in15, 29, 33, this is not a problem. For by elementary
calculus,p(0) < 1/3 andp(1) > 2/3 imply thatp’ (x) > 1/3 for some reak € [0,1], and therefore
r) > 1/3. Furthermore, lex* be a point in[0,N] where|p(x*)| =r©@. Thenp(|x*|) € [0,1] and
p([x*]) € [0,1] imply thatr® >2(r(® —1). Thus

deg(p ¢Ntﬁ ¢waqy32 ”}=Q(Wﬂ-

This is the proof of Beals et al7] that quantum search requir@(1/N) queries.

When proving a direct product theorem, we can no longer appsorem 4.0 straightforwardly.
The reason is that the success probabilities in question are extremely small, and therefore the maximum
derivativer® could also be extremely small. Fortunately, though, we can still prove a good lower
bound on the degree of the relevant polynonpialThe key is to look not just at the first derivative @f
but at higher derivatives.

To start, we need a lemma about the behavior of functions under repeated differentiation.

Lemma 4.3. Let f: R — R be an infinitely differentiable function such that for some positive integer
K, we have {i)=0foralli € {0,...,K—1} and f(K) =& > 0. Also, let {™ = max.jon;| ™ (x)],
where ™ (x) is the n" derivative of f evaluated at x (thus% = f). Then ™ > §/m! for all

me {0,...,K}.

Proof. We claim, by induction om, that there exisK — m- 1 points 0< xg“) < < x,@m < K such
that f (M (xf””) =0 foralli <K-m-1andfM (x@m> > §/ml. If we definex® =i, then the
base casen = 0 is immediate from the conditions of the lemma. Suppose the claim is trua;for

then by elementary calculus, for alk K — m— 2 there exists a poim‘i(ml) (xi(m), M) such that
f(m+1) (xi(m“)> =0. Notice that{™™" >x™ > ... > x% =i, So there is also a poind" > €

(x@m_l, xf<”1)m> such that

(0 () 7 ()

(mt1) [ (m+1)
)
o/ml —
“K_(K—m—_1)
6
~(m+1)

O

With the help ofLemma 4.3we can sometimes lower-bound the degree of a real polynomial even its
first derivative is small throughout the region of interest. To do so, we use the following generalization
of A. A. Markov’s inequality Theorem 4.2, which was proved by A. A. Markov’s younger brother V.

A. Markov in 1892 (R5]; see also32)).
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Theorem 4.4 (V. A. Markov). Given a real polynomial p of degree d and positive real number N, let
r™ = maxecon [P™ (X)|. Then forall me {1,...,d},

©\"
rm < (2';“ ) " (1)

<2r(0) ) "2 (2 - 12) (- 22) oo (2 (M= 1))
< : .

N

Here T (x) = cos(darccox) is the d" Chebyshev polynomial of the first kind.
As we demonstrate below, combinifigeorem 4.4vith Lemma 4.3yields a lower bound on dég).
Lemma 4.5. Let p be a real polynomial such that
(i) p(x) €[0,1] at all integer points »xc {0,...,N}, and

(i) for some positive integer K N and realé > 0, we have pK) = 6 and p(i) =0 for all i €
{0,...,K—1}.

Thendeg(p) = Q (W)

Proof. Let p™ andr(™ be as inTheorem 4.4 Then for allme {1,...,deg(p)}, Theorem 4.4jields

() < <2r(°)>m deg(p)™"

N

Rearranging,

N 1/m
deg(p)z\/zr(o) (1-3:5---- (2m—1)-r(m)

for all m> 1 (if m> deg(p) thenr(™ = 0 so the bound is trivial).
There are now two cases. First suppdSe> 2. Then as discussed previously, condition (i) implies
thatr® > 2(r(© — 1), and hence that

dep = [0 [N Y g ()

by Theorem 4.2 Next suppose©® < 2. Thenr(™ > §/ml for all m< K by Lemma 4.3 So setting
m= K yields

deg(p)z\/lz (1.3.5 ..... (2K1).6)1/K:Q(\/N51/K)‘

Either way we are done. O

THEORY OF COMPUTING, Volume 1 (2005), pp. 1-28 15


http://dx.doi.org/10.4086/toc

SCcOTT AARONSON

Strictly speaking, we do not need the full strengtfTborem 4.40 prove a lower bound on dép)
that suffices for an oracle separation betwd#hand BQP /qpoly. For we can show a “rough-and-
ready” version of V. A. Markov’s inequality by applying A. A. Markov’'s inequalitfheorem 4.2
repeatedly, t, p¥, p?, and so on. This yields

2 2 m
rm < Ndeg(p)zr(m*” < (N deg(p)z) r

for all m.  If deg(p) is small, then this upper bound ai™ contradicts the lower bound of
Lemma 4.3 However, the lower bound on dég) that one gets from A. A. Markov’s inequality is

only Q (\/N61/K/K), as opposed t@ (v N81/K) from Lemma 4.5'°

Shortly after seeing our proof of a weak direct product theorem, Klabpklek, and de WolfZ?]
managed to improve the lower bound on ¢@pgto the essentially tigh® <\/NK81/K>. In particular,

their bound implies thad decreases exponentially Kiwhenever degp) = o (v/NK). They obtained
this improvement byactoring pinstead of differentiating it as ihemma 4.3
In any case, a direct product theorem follows trivially from what has already been said.

Theorem 4.6 (Direct Product Theorem). Suppose a quantum algorithm makes T queries to an oracle
string X € {0,1}". Let 8 be the minimum probability, over all X with Hamming weigkt = K, that

the algorithm finds all K of thel’ bits. Thené < (cTz/N)K for some constant c.

Proof. Have the algorithm accept if it find§ or more ‘1’ bits and reject otherwise. Let(i) be the
expected probability of acceptanceXifis drawn uniformly at random subject | =i. Then we know
the following aboutp:

(i) p(i) €10,1] at all integer points € {0,...,N}, sincep(i) is a probability.
(i) p(i)=0forallie{0,...,K—1}, since there are n&& marked items to be found.
(i) p(K)=3d.

FurthermorelL,emma 4.limplies thatp is a polynomial ini satisfying degp) < 2T. It follows from
Lemma 4.5hatT =Q (\/N61/K), or rearranging, thad < (cTZ/N)K for some constart. O

We can now prove the desired oracle separation using standard complexity theory tricks.

Theorem 4.7. There exists an oracle relative to whidiP ¢ BQP /qpoly.

10An earlier version of this paper claimed to prove (lgg= Q (\/NK/Iog3/2(1/6)), by applyingBernstein’s inequality

[17] rather than A. A. Markov's to all derivatives™. We have since discovered a flaw in that argument. In any case, the
Bernstein lower bound is both unnecessary for an oracle separation, and superseded by the later results of Kl&&}k et al. [
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Proof. Given an oracléd: {0,1}" — {0,1}, define the languagea by (y,z) € La if and only ify < z
lexicographically and there exists arsuch thaty < x < zandA(x) = 1. ClearlyLa € NP* for all A.

We argue that for som&, no BQP/qgpoly machineM with oracle access t& can decidd_a. Without
loss of generality we assuni s fixed, so that only the advice statggn) },., depend orA. We also

assume the advice is boosted, so &t error probability on any inputy, z) is 2-(n?),

Choose a seB C {0,1}" subject to|S = 210, then for allx € {0,1}", setA(x) = 1 if and only if
x €S We claim that by using/, an algorithm could find all'21° elements oS with high probability
after only 2/%poly(n) queries toA. Here is how: first use binary search (repeatedly halving the
distance betweey andz) to find the lexicographically first element 8f By Lemma 2.2 the boosted

advice statéyy) is good for 2(™) uses, so this takes only pdly) queries. Then use binary search to
find the lexicographically second element, and so on until all elements have been found.

Now replace y,) by the maximally mixed state asiheorem 3.4 This yields an algorithm that uses
no advice, makes"?'%poly(n) queries, and finds all"2!® elements oS with probability 2-OPolyM),
But takingd = 2-CPoly() T = 27/0pgly(n), N = 2", andK = 2"/19, such an algorithm would satisfy
5> (cTz/N)K, which violates the bound dfheorem 4.6 m

Indeed one can show thliP ¢ BQP/qpoly relative a random oracle with probability*}.

5 The Trace Distance Method

This section introduces a new method for proving lower bounds on quantum one-way communication
complexity. Unlike inSection3, here we do not try to simulate quantum protocols using classical ones.
Instead we prove lower bounds for quantum protocols directly, by reasoning about the trace distance
between two possible distributions over Alice’s quantum message (that is, between two mixed states).
The result is a method that works even if Alice’s and Bob’s inputs are the same size.

We first state our method as a general theorem; theBeation5.1, we apply the theorem to prove
lower bounds for two problems of Ambainis. LiED — || denote the variation distance between prob-
ability distributionsD and€.

Theorem 5.1. Let f:{0,1}" x {0,1}™ — {0,1} be a total Boolean function. For eachey{0,1}™, let
Ay be a distribution over x {0,1}" such that f(x,y) = 1. LetB be a distribution over ¥ {0,1}", and
let Dy be the distribution ove({0, 1}”)k formed by first choosing ¢ B and then choosing k samples
independently frondy. Suppose tha®rc o, yes[f (X,y) = 0] = Q(1) and that|| D2 — D3|| < §. Then
Q3 (f) =Q(log1/9).

Proof. Suppose that if Alice’s input ig, then she sends Bob thajubit mixed statgp,. Suppose also
that for everyx € {0,1}" andy € {0,1}™, Bob outputsf (x,y) with probability at least 23. Then by
amplifying a constant number of times, Bob’s success probability can be madefdr any constant

€ > 0. So withL = O(l) qubits of communication, Bob can distinguish the following two cases with
constant bias:

11First group the oracle bits into polynomial-size blocks as Bennett and 18]lido, then use the techniques of Aaronson
[1] to show that the acceptance probability is a low-degree univariate polynomial in the number of all-0 blocks. The rest of
the proof followsTheorem 4.7
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Case |. ywas drawn fromB andx from D1.

Case Il.y was drawn fronB andx from Ay

For in Case |, we assumed thiatx, y) = 0 with constant probability, whereas in Casefl(x,y) = 1
always. An equivalent way to say this is that with constant probability gyvBob can distinguish the
mixed statep = EXyen, [px] andpy = EXyce Ay [px] with constant bias. Therefore

EX[llo=pylle] =Q(1).

We need an upper bound on the trace distdfice pyl|,, that is more amenable to analysis. Let
., AL be the eigenvalues @f — py. Then

12
o =Pyl =5 _Z\/MI
i=

W

2
=2L/2- 1J i.le‘(p)ij = (Py)ij

I\) \

’2
where(p)ij is the(i, j) entry ofp. Here the second line uses the Cauchy-Schwarz inequality, and the

third line uses the unitary invariance of the Frobenius norm.
We claim that

2 2
Eeé [iﬁjz_l‘(p)ij - (Py)ij’ ] <26.

From this claim it follows that

. L/2-1
EX [llp —pyl,] <2 EXNJZ py.,]

2L 2
<2L/“J EX| 3 |e)i (o) ]
AT,

i,Jj=1

Therefore the message lengtimust beQ (log 1/8) to ensure that Exs [[|p — pyll,,] = Q(1).
Let us now prove the claim. We have

EX [ Y [0)i — (o] ] = Zz (](p)u \Z—ZRe(m):‘j EX [(pyx,}) +EX [1<py>i,- ﬂ)

i,|]=1 i,]=1

% (y€93 U(Py)”ﬂ ‘(P)ijr),

=1
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T

since EXcp {(py)ij] = (p);;- Foragiven(i, j) pair,

2

ex ||| - o] = £x [ X [0 ]| | | EX [(p)]

yer yeB | [xeAy xeDy
B ye'BEéeAy [(px>” <pz)'l:| _XZEDl |:(px)lj (pz)u]
- Z <£§[X 74~ g%r[x, Z]> (Px)ij (P2)ij -
Now for all x, z,
2L 2L 2
S (i (pa)y| < 3 || <.
Hence
2L
Pr .2 (Px)ij (P2)ij < Pr(x,z — Pr[x,Z|
XZ( D} )i,,z—l A XZZ D, 2
=2||D,— Di||
<20,
and we are done. -

The difficulty in extendingTheorem 5.1to partial functions is that the distributidh; might not
make sense, since it might assign a nonzero probability to sdorevhich f (x,y) is undefined.

5.1 Applications

In this subsection we applyheorem 5.1to prove lower bounds for two problems of Ambainis. To
facilitate further research and to investigate the scope of our method, we state the problems in a more
general way than Ambainis did. Given a groBpthe coset problenCose{G) is defined as follows.

Alice is given a left cose€ of a subgroup irG, and Bob is given an elemey G. Bob must output 1

if y € C and O otherwise. By restricting the gro@ we obtain many interesting and natural problems.

For example, ifp is prime then Cosgy) is just the equality problem, so the protocol of Rabin and Yao

[31] yields Q} (Cose(Z;,)) = ©(loglogp).
Theorem 5.2. Q3 (Cose{(Z3) ) = ©(logp).

Proof. The upper bound is obvious. For the lower bound, it suffices to consider a furfgtabefined
as follows. Alice is givenx,y) € IF% and Bob is givern(a,b) € F%; then

1 if y=ax+b(modp)
0 otherwise.

fp (X7y7 a7 b) = {
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Let B be the uniform distribution ovefa, b) € F% and letA,p, be the uniform distribution ovefx,y)
such thay = ax+b(modp). ThusD; is the uniform distribution ovefx,y) € IF%; note that

cD p — 1
b = 0 — =
<X7y> ,<a,b>€‘B [ (X7 y7 a, ) :I

But what about the distributiof,, which is formed by first drawinga, b) € B, and then drawingx, y)
and(z w) independently fromd,p? Given a paiKx,y), (z,w) € F% there are three cases regarding the
probability of its being drawn frorD,:

(1) (x,y) = (z,w) (p? pairs). In this case

gr[<x7 y> ) <Zv W>] = >Z Pr[(a, bﬂ PI’KX, y> ’ <Z7W> ’ <a7 b>]
2 (a,b)eF3

1 1 1
Plew) T
(2) x+#z(p*— p® pairs). Inthis case there exists a unidag b*) such thaly = a*x+ b* (modp) and
w = a*z+b* (modp), so

Prixy), (zw)] = Pri(a’, b)]Pri{x.y),{zw) | (@, b")]

11 1
p2 p> p*

(3) x=zbuty# w (p3— p? pairs). In this case By, [(x,y), (z,w)] = 0.

Putting it all together,

VAT (e O B S N IR B e 1 PN
D2 DN—2<pp3 o | T (P =P | =+ (PP O m)
11
p P

So takingd = 1/p—1/p?, we haveQj (Cose{Z3)) = Q(log(1/6)) = Q(logp) by Theorem 5.1 [

We now consider Ambainis’ second problem. Given a gr@ipnd nonempty seb c G with
IS < |G| /2, thesubset problenSubsefG, S) is defined as follows. Alice is givere G and Bob is
giveny € G; then Bob must output 1 ¥y € Sand 0 otherwise.

Let M be the distribution ovest~ € G formed by drawings andt uniformly and independently
fromS Then letA = | M — D1, whereD; is the uniform distribution ove.

Proposition 5.3. For all G, S such thatS| < |G| /2,

Q3 (SubsefG,S)) = Q(log1/4).
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Proof. Let B be the uniform distribution ovey € G, and letAy be the uniform distribution oversuch
thatxye S. ThusD; is the uniform distribution ovex € G; note that

SRS

X
xeDl,yeﬁ[ Y¢S = ]G| - 2
We have
1 {ye G,steS:xy=szy=t}| 1
HrDZ_@ H 2 Z 2 T ~2
x,2eG ‘G’ ‘S| |G‘
1 [{steS:ixzl=st}| 1
2xzeG ‘S|2 ’G‘z
\{steS x=stt}| 1
2 l [
\G!
= IIM—Dlll
=A.
Therefore lod1/8) = Q(log1/A). O

Having lower-bounde®; (SubsetG, S)) in terms of J/A, it remains only to upper-bound the varia-
tion distance\. The following proposition implies that for all constamts- O, if Sis chosen uniformly
at random subject t¢5| = |G|*/?*¢, thenQL (SubsetG,S)) = Q(log(|G|)) with constant probability
overS

Theorem 5.4. For all groups G and integers Kk {1,...,|G|}, if SC G is chosen uniformly at random
subjectto§ =K, thenA=0 (N / |G|/K> with Q (1) probability over S.

B=5 3 P g < ¢|€¢% 2t rew)

by the Cauchy-Schwarz inequality. We claim that

GRS

for some constart. From this it follows by Markov’s inequality that

Fér[xge(ﬁ{[ e r<13|>2>ZC] <
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< VIel e o vIGl
- 2 K2 K
with probability at least 12.

Let us now prove the claim. We have

and hence

_ 1 _ | — pris — xs
I;{[x]_fjr[ssj x} E’jr[s XS],

whereS={s,...
of expectation,

|5 (- g)

,S« } andi, j are drawn uniformly and independently fror,...,K}. So by linearity

2
X; ((E}_r[a = xs,-]) — ’é‘ E’jr[s =Xxsj] + |Gl\2>

(g ) G a(ede) s

where
Pxij = Rrls =xsj],
Pxiijki = PSY[S' = XSj A = Xg].

First we analyzeyj. Letord(x) be the order okin G. Of theK? possible ordered pai(, j), there
areK pairs with the “pattern’i (meaning that = j), andK (K — 1) pairs with the patternj (meaning
thati # j). If ord(x) = 1 (that isx is the identity), then we hawgyj; = Prs[s = sSj], sopxij = 1 under
the patterrii, andpy;j = O under the patterrj. On the other hand, if orck) > 1, thenpy;; = 0 under
the patterrii, andpyjj = |G|%1 under the patterij. So
1 K 1 ( K(K—-1)

IR R (SCRE ey R
SPRPILEENT o1

Though unnecessarily cumbersome, the above analysis was a warmup for the more complicated case

of Pxiijki -

The following table lists the expressions foy;j« , given ord’x) and the pattern dfi, j, k).

Pattern Number of such 4-tuplesord(x) =1 ord(x)=2  ord(x) > 2
iiii , iikk K? 1 0 0

i K (K-1 0 Rl
ijji K (K-1) 0 o 0

il ki, ijii ,ijjj 4K (K —1) 0 0 0
ijki,ijjk 2K (K —1) (K —2) 0 0 ()
ikl ijkk,ijik,ijkj 4K (K 1)(K-2) 0 0 0

JLS KK-D(K=2)(K- 0  (oEu(eEs  (oEnEEs
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Let r be the number ok € G such that or@x) = 2, and letr’ = |G| —r — 1 be the number such that
ord(x) > 2. Then

1 K 1

L IG]-1 (IGI-1)(|G]-2)
wa Pxijkl = 2 ( K(K—1)(K—2)(K—3
K4x§6hjgzl K4 +(r+ 1) e

1 1
< O —
NEEEN <K2>

K2+ (2r +1/) KIK=D |y opr KIK-DIK=2) )

using the fact thak < |G|.
Putting it all together,

1\? 1 1 2 1 1
i 1Y) < by rod) - 20 2 ofd)
§<M 6) | =e—3°\ke) g T e "k

and we are done. O

EX
S

From fingerprinting we also have the following upper bound. d.be the periodicity of5, defined
as the number of distinct seg$S= {gs: s< S} whereg € G.

Proposition 5.5. R} (SubsetG, S)) = O(log|S +loglogq).

Proof. Assume for simplicity thaty = |G|; otherwise we could reduce to a subgradp< G with
[Hl = g. The protocol is as follows: Alice draws a uniform random priperom the range
[|S|2Iogz|G| ,2|9%log? |G |; she then sends Bob the p&js,xmodp) wherex is interpreted as an in-
teger. This take®(log|S +loglog|G|) bits. Bob outputs 1 if and only if there existza& G such
thatzy € Sandx = z(modp). To see the protocol’s correctness, observe that4fz, then there at

most log G| primesp such thatk — z= 0(modp), whereas the relevant range conteﬁhé%’%)
primes. Therefore, iky ¢ S, then by the union bound

F;r[ﬂz: zye Sx=z(modp)| =0 <|S| log|G| ng@) =0(1).

S?log? |G|

6 Open Problems

e Are R}(f) andQ}(f) polynomially related for every total Boolean functid®? Also, can we
exhibit any asymptotic separation between these measures? The best separation we know of
is a factor of 2: for the equality function we ha® (EQ) > (1—o(1))log,n, whereas Winter
[37] has shown thaQ}(EQ) < (1/2+0(1))log,n using a protocol involving mixed staté$.

This factor-2 savings is tight for equality: a simple counting argument showsQ}@&Q) >

12if we restrict ourselves to pure states, th@n- o(1))log, n qubits are needed. Based on that fact, a previous version of
this paper claimed incorrectly th@¥ (EQ) > (1—o(1))log,n.
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(1/2—0(1))log, n; and although the usual randomized protocol for equabity ises(2+0(1))
log, n bits, there exist protocols based on error-correcting codes that use ox(gipg- log, n+
O(1) bits. All of this holds for any constant error probabilityOe < 1/2.

As a first step toward answering the above questions, can we lower-bQk@ose(G))
for groups other tharﬁ% (such asZj, or nonabelian groups)? Also, can we characterize
Q3 (SubsetG, 9)) for all setsS, closing the gap between the upper and lower bounds?

Is there an oracle relative to whi&QP /poly # BQP /qpoly?

Can we give oracles relative to whidtP N coNP andSZK are not contained i8BQP/qpoly?
Bennett et al. §] gave an oracle relative to whiddP N coNP ¢ BQP, while Aaronson ] gave
an oracle relative to whicBZK ¢ BQP.

Even more ambitiously, can we prove a direct product theorem for quantum query complexity that
applies to any partial or total function (not just search)?

For all f (partial or total), isR5 (f) = O(,/n) wheneveQ3 (f) = O(logn)? In other words, is the
separation of Bar-Yossef et ab][the best possible?

Canthe resub* (f) = O (mQ} (f)logQi(f)) for partial f be improved td* (f) =0 (mQ5 (f))?
We do not even know how to rule oDt (f) = O (m+ Q}(f)).

In the Simultaneous Messages (SM) model, there is no direct communication between Alice and
Bob; instead, Alice and Bob both send messages to a third party calledféiee who then
outputs the function value. The complexity measure is the sum of the two message lengths.

Let RQ (f) anng (f) be the randomized and quantum bounded-error SM complexitiésef
spectively, and IeRg’p”b(f) be the randomized SM complexity if Alice and Bob share an arbi-
trarily long random string. Building on work by Buhrman et allZ], Yao [40] showed that

|2| (f)=0(logn) wheneveRQ’p“b( f)=0(1). He then asked about the other direction: for some
e >0, doesRIP(f) = O (n%/2-¢) wheneverQ) (f) = O(logn), and doesR) (f) = O (n¢)
wheneverQQ(f) = O(logn)? In an earlier version of this paper, we showed ﬂR‘%l(f) =
O(\m (R!’p“b(f) +Iogn>), which means that a positive answer to Yao’s first question would
imply a positive answer to the second. Later we learned that Yao independently proved the same
result B9].
Here we ask a related question: c@ﬂ(f) ever be exponentially smaller thd#Z"p”b(f)?

(Buhrman et al. 12] showed thalQ!(f) can be exponentially smaller thﬂﬂ (f).) lordanis
Kerenidis has pointed out to us that, based on the hidden matching problem of Bar-Yossef et al.
[6] discussed irSection2, one can define elation for which Qg (f) is exponentially smaller

thanRg’p”b(f). However, as in the case @ (f) versusR (f), it remains to extend that result to
functions.
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