
SLIME User Manual
The Superior Lisp Interaction Mode for Emacs

2.0, $Date: 2006/04/20 05:46:50 $

i

Table of Contents

1 Introduction . 1

2 Getting started . 2
2.1 Supported Platforms . 2
2.2 Downloading SLIME . 2

2.2.1 Downloading from CVS . 2
2.2.2 CVS incantations . 3

2.3 Installation . 3
2.4 Running SLIME. 3

3 slime-mode . 4
3.1 User-interface conventions . 4

3.1.1 Temporary bu�ers . 4
3.1.2 Key bindings . 4
3.1.3 *inferior-lisp* bu�er. 4
3.1.4 Multithreading . 5

3.2 Commands . 5
3.2.1 Compilation commands . 5
3.2.2 Finding de�nitions (\Meta-Point"). 6
3.2.3 Lisp Evaluation . 6
3.2.4 Documentation . 6
3.2.5 Programming Helpers . 7

3.2.5.1 Completion . 7
3.2.5.2 Macro Expansion . 8
3.2.5.3 Accessing Documentation . 8
3.2.5.4 Disassembly . 8

3.2.6 Abort/Recovery . 8
3.2.7 Cross-reference . 8
3.2.8 Inspector . 9
3.2.9 Pro�ling . 10

3.3 Semantic indentation . 10
3.4 Reader conditional fonti�cation . 11

4 REPL: the \top level" . 12
4.1 REPL commands . 12
4.2 Input navigation . 12
4.3 Shortcuts . 13

5 SLDB: the SLIME debugger 14
5.1 Examining frames . 14
5.2 Invoking restarts . 14
5.3 Navigating between frames . 15
5.4 Miscellaneous Commands . 15

ii

6 Extras . 16
6.1 slime-selector . 16
6.2 slime-autodoc-mode . 16
6.3 slime-macroexpansion-minor-mode . 16
6.4 Multiple connections . 17
6.5 Typeout frames . 17

7 Customization . 19
7.1 Emacs-side . 19

7.1.1 Hooks . 20
7.2 Lisp-side (Swank) . 20

7.2.1 Communication style . 20
7.2.2 Other con�gurables . 21

8 Credits. 23
Hackers of the good hack . 23
Thanks! . 23

Chapter 1: Introduction 1

1 Introduction

SLIME is the \Superior Lisp Interaction Mode for Emacs."
SLIME extends Emacs with new support for interactive programming in Common Lisp.

The features are centered around slime-mode, an Emacs minor-mode that complements the
standard lisp-mode. While lisp-mode supports editing Lisp source �les, slime-mode adds
support for interacting with a running Common Lisp process for compilation, debugging,
documentation lookup, and so on.

The slime-mode programming environment follows the example of Emacs's native Emacs
Lisp environment. We have also included good ideas from similar systems (such as ILISP)
and some new ideas of our own.

SLIME is constructed from two parts: a user-interface written in Emacs Lisp, and a
supporting server program written in Common Lisp. The two sides are connected together
with a socket and communicate using an RPC-like protocol.

The Lisp server is primarily written in portable Common Lisp. The required
implementation-speci�c functionality is speci�ed by a well-de�ned interface and
implemented separately for each Lisp implementation. This makes SLIME readily portable.

Chapter 2: Getting started 2

2 Getting started

This chapter tells you how to get SLIME up and running.

2.1 Supported Platforms

SLIME supports a wide range of operating systems and Lisp implementations. SLIME runs
on Unix systems, Mac OSX, and Microsoft Windows. GNU Emacs versions 20 and 21 and
XEmacs version 21 are supported.

The supported Lisp implementations, roughly ordered from the best-supported, are:
� CMU Common Lisp (CMUCL), 18e or newer
� Steel Bank Common Lisp (SBCL), latest o�cial release
� OpenMCL, version 0.14.3
� LispWorks, version 4.3 or newer
� Allegro Common Lisp (ACL), version 6 or newer
� CLISP, version 2.33.2 or newer
� Armed Bear Common Lisp (ABCL)
� Corman Common Lisp (CCL), version 2.51 or newer with the patches from

http://www.grumblesmurf.org/lisp/corman-patches)
� Scieneer Common Lisp (SCL), version 1.2.7 or newer
Most features work uniformly across implementations, but some are prone to variation.

These include the precision of placing compiler-note annotations, XREF support, and fancy
debugger commands (like \restart frame").

2.2 Downloading SLIME

You can choose between using a released version of SLIME or accessing our CVS repository
directly. You can download the latest released version from our website:

http://www.common-lisp.net/project/slime/
We recommend that users who participate in the slime-devel mailing list use the CVS

version of the code.

2.2.1 Downloading from CVS

SLIME is available from the CVS repository on `common-lisp.net'. You have the option to
use either the very latest code or the tagged FAIRLY-STABLE snapshot.

The latest version tends to have more features and fewer bugs than the FAIRLY-STABLE
version, but it can be unstable during times of major surgery. As a rule-of-thumb recom-
mendation we suggest that if you follow the slime-devel mailing list then you're better
o� with the latest version (we'll send a note when it's undergoing major hacking). If you
don't follow the mailing list you won't know the status of the latest code, so tracking
FAIRLY-STABLE or using a released version is the safe option.

If you checkout from CVS then remember to cvs update occasionally. Improvements are
continually being committed, and the FAIRLY-STABLE tag is moved forward from time to
time (about once per month).

http://www.grumblesmurf.org/lisp/corman-patches
http://www.common-lisp.net/project/slime/

Chapter 2: Getting started 3

2.2.2 CVS incantations

To download SLIME you �rst con�gure your CVSROOT and login to the repository.
export CVSROOT=:pserver:anonymous@common-lisp.net:/project/slime/cvsroot
cvs login

(The password is anonymous)
The latest version can then be checked out with:

cvs checkout slime
Or the FAIRLY-STABLE version can be checked out with:

cvs checkout -rFAIRLY-STABLE slime
If you want to �nd out what's new since the version you're currently running, you can

di� the local `ChangeLog' against the repository version:
cvs diff -rHEAD ChangeLog # or: -rFAIRLY-STABLE

2.3 Installation

With a Lisp implementation that can be started from the command-line, installation just
requires a few lines in your `~/.emacs':

(setq inferior-lisp-program "the path to your Lisp system")
(add-to-list 'load-path "the path of your `slime' directory")
(require 'slime)
(slime-setup)

The snippet above also appears in the `README' �le. You can copy&paste it from there,
but remember to �ll in the appropriate path.

We recommend not loading the ILISP package into Emacs if you intend to use SLIME.
Doing so will add a lot of extra bindings to the keymap for Lisp source �les that may be
confusing and may not work correctly for a Lisp process started by SLIME.

2.4 Running SLIME

SLIME is started with the Emacs command M-x slime. This uses the inferior-lisp
package to start a Lisp process, loads and starts the Lisp-side server (known as \Swank"),
and establishes a socket connection between Emacs and Lisp. Finally a REPL bu�er is
created where you can enter Lisp expressions for evaluation.

At this point SLIME is up and running and you can start exploring.

Chapter 3: slime-mode 4

3 slime-mode

SLIME's commands are provided via slime-mode, a minor-mode used in conjunction with
Emacs's lisp-mode. This chapter describes the slime-mode and its relatives.

3.1 User-interface conventions

To use SLIME comfortably it is important to understand a few \global" user-interface char-
acteristics. The most important principles are described in this section.

3.1.1 Temporary bu�ers

Some SLIME commands create temporary bu�ers to display their results. Although these
bu�ers usually have their own special-purpose major-modes, certain conventions are ob-
served throughout.

Temporary bu�ers can be dismissed by pressing q. This kills the bu�er and restores the
window con�guration as it was before the bu�er was displayed. Temporary bu�ers can also
be killed with the usual commands like kill-buffer, in which case the previous window
con�guration won't be restored.

Pressing RET is supposed to \do the most obvious useful thing." For instance, in an
apropos bu�er this prints a full description of the symbol at point, and in an XREF bu�er
it displays the source code for the reference at point. This convention is inherited from
Emacs's own bu�ers for apropos listings, compilation results, etc.

Temporary bu�ers containing Lisp symbols use slime-mode in addition to any special
mode of their own. This makes the usual SLIME commands available for describing symbols,
looking up function de�nitions, and so on.

3.1.2 Key bindings

In general we try to make our key bindings �t with the overall Emacs style. We also have
the following somewhat unusual convention of our own: when entering a three-key sequence,
the �nal key can be pressed either with control or unmodi�ed. For example, the slime-
describe-symbol command is bound to C-c C-d d, but it also works to type C-c C-d C-d.
We're simply binding both key sequences because some people like to hold control for all
three keys and others don't, and with the two-key pre�x we're not afraid of running out of
keys.

There is one exception to this rule, just to trip you up. We never bind C-h anywhere in
a key sequence, so C-c C-d C-h doesn't do the same thing as C-c C-d h. This is because
Emacs has a builtin default so that typing a pre�x followed by C-h will display all bindings
starting with that pre�x, so C-c C-d C-h will actually list the bindings for all documentation
commands. This feature is just a bit too useful to clobber!

3.1.3 *inferior-lisp* bu�er

SLIME internally uses the inferior-lisp package to start Lisp processes. This has a few
user-visible consequences, some good and some not-so-terribly. To avoid confusion it is
useful to understand the interactions.

The bu�er *inferior-lisp* contains the Lisp process's own top-level. This direct
access to Lisp is useful for troubleshooting, and some degree of SLIME integration is available

Chapter 3: slime-mode 5

using the inferior-slime-mode. However, in normal use we recommend using the fully-
integrated SLIME REPL and ignoring the *inferior-lisp* bu�er.

An unfortunate property of inferior-lisp is it inserts some commands of its own
directly into the lisp-mode keymap, such that they aren't easily disabled. This makes Lisp
source bu�ers slightly schizophrenic, having both SLIME and inferior-lisp commands
bound to keys and operating independently.

SLIME overrides most key bindings, so in practice you are unlikely to accidentally use
an inferior-lisp command. If you do �nd a command that pops up the *inferior-
lisp* bu�er, that command doesn't belong to SLIME, and you should probably lookup our
equivalent.

3.1.4 Multithreading

If the Lisp system supports multithreading, SLIME spawns a new thread for each request,
e.g., C-x C-e creates a new thread to evaluate the expression. An exception to this rule
are requests from the REPL: all commands entered in the REPL bu�er are evaluated in a
dedicated REPL thread.

Some complications arise with multithreading and special variables. Non-global spe-
cial bindings are thread-local, e.g., changing the value of a let bound special variable in
one thread has no e�ect on the binding of the variables with the same name in other
threads. This makes it sometimes di�cult to change the printer or reader behaviour for
new threads. The variable swank:*default-worker-thread-bindings* was introduced
for such situtuations: instead of modifying the global value of a variable, add a binding the
swank:*default-worker-thread-bindings*. E.g., with the following code, new threads
will read
oating point values as doubles by default:

(push '(*read-default-float-format* . double-float)
swank:*default-worker-thread-bindings*).

3.2 Commands

3.2.1 Compilation commands

SLIME has fancy commands for compiling functions, �les, and packages. The fancy part is
that notes and warnings o�ered by the Lisp compiler are intercepted and annotated directly
onto the corresponding expressions in the Lisp source bu�er. (Give it a try to see what this
means.)

C-c C-k slime-compile-and-load-file
Compile and load the current bu�er's source �le.

C-c M-k slime-compile-file
Compile (but don't load) the current bu�er's source �le.

C-c C-c slime-compile-defun
Compile the top-level form at point.

The annotations are indicated as underlining on source forms. The compiler message
associated with an annotation can be read either by placing the mouse over the text or with
the selection commands below.

Chapter 3: slime-mode 6

M-n
M-p slime-next-note, slime-previous-note

These commands move the point between compiler notes and display the new
note.

C-c M-c slime-remove-notes
Remove all annotations from the bu�er.

3.2.2 Finding de�nitions (\Meta-Point").

The familiar M-. command is provided. For generic functions this command �nds all meth-
ods, and with some systems it does other fancy things (like tracing structure accessors to
their DEFSTRUCT de�nition).
M-. slime-edit-definition

Go to the de�nition of the symbol at point.
M-, slime-pop-find-definition-stack Go back from a de�nition found with M-

.. This gives multi-level backtracking when M-. has been used several times.

3.2.3 Lisp Evaluation

These commands each evaluate a Lisp expression in a di�erent way. By default they show
their results in a message, but a pre�x argument causes the results to be printed in the
REPL instead.
C-M-x slime-eval-defun

Evaluate top-level form.
C-x C-e slime-eval-last-expression

Evaluate the expression before point.
C-c C-p slime-pprint-eval-last-expression

Evaluate the expression before point and pretty-print the result.
C-c C-r slime-eval-region

Evaluate the region.
C-c : slime-interactive-eval

Evaluate an expression read from the minibu�er.
M-x slime-scratch

Create a `*slime-scratch*' bu�er. In this bu�er you can enter Lisp expressions
and evaluate them with C-j, like in Emacs's `*scratch*' bu�er.

If `C-M-x' or `C-x C-e' is given a numeric argument, it inserts the value into the current
bu�er at point, rather than displaying it in the echo area.

3.2.4 Documentation

SLIME's online documentation commands follow the example of Emacs Lisp. The commands
all share the common pre�x C-c C-d and allow the �nal key to be modi�ed or unmodi�ed
(See Section 3.1.2 [Key bindings], page 4.)
C-c C-d d slime-describe-symbol

Describe the symbol at point.

Chapter 3: slime-mode 7

C-c C-d a slime-apropos
Apropos search. Search Lisp symbol names for a substring match and present
their documentation strings. By default the external symbols of all packages
are searched. With a pre�x argument you can choose a speci�c package and
whether to include unexported symbols.

C-c C-d z slime-apropos-all
Like slime-apropos but also includes internal symbols by default.

C-c C-d p slime-apropos-package
Show apropos results of all symbols in a package. This command is for browsing
a package at a high-level. With package-name completion it also serves as a
rudimentary Smalltalk-ish image-browser.

C-c C-d h slime-hyperspec-lookup
Lookup the symbol at point in the Common Lisp Hyperspec. This uses the
familiar `hyperspec.el' to show the appropriate section in a web browser. The
Hyperspec is found either on the Web or in common-lisp-hyperspec-root,
and the browser is selected by browse-url-browser-function.

C-c C-d ~ common-lisp-hyperspec-format
Lookup a format character in the Common Lisp Hyperspec.

3.2.5 Programming Helpers

3.2.5.1 Completion

M-TAB slime-complete-symbol
Complete the symbol at point. Note that three styles of completion are avail-
able in SLIME, and the default di�ers from normal Emacs completion. See
Section 7.1 [Emacs-side customization], page 19.

C-c M-i slime-fuzzy-complete-symbol
Presents a list of likely completions to choose from for an abbreviation at
point. This is a third completion method and it is very di�erent from the more
traditional completion to which slime-complete-symbol defaults. It attempts
to complete a symbol all at once, instead of in pieces. For example, \mvb"
will �nd \multiple-value-bind" and \norm-df" will �nd \least-positive-
normalized-double-float". This can also be selected as the method of com-
pletion used for slime-complete-symbol.

C-c C-s slime-complete-form
Looks up and inserts into the current bu�er the argument list for the function
at point, if there is one. More generally, the command completes an incomplete
form with a template for the missing arguments. There is special code for dis-
covering extra keywords of generic functions and for handling make-instance
and defmethod. Examples:

(subseq "abc" <C-c C-s>
--inserts--> start [end])

(find 17 <C-c C-s>
--inserts--> sequence :from-end from-end :test test

Chapter 3: slime-mode 8

:test-not test-not :start start :end end
:key key)

(find 17 '(17 18 19) :test #'= <C-c C-s>
--inserts--> :from-end from-end

:test-not test-not :start start :end end
:key key)

(defclass foo () ((bar :initarg :bar)))
(defmethod print-object <C-c C-s>
--inserts--> (object stream)

body...)
(defmethod initialize-instance :after ((object foo) &key blub))
(make-instance 'foo <C-c C-s>
--inserts--> :bar bar :blub blub initargs...)

3.2.5.2 Macro Expansion

See Section 6.3 [slime-macroexpansion-minor-mode], page 16.
C-c C-m slime-macroexpand-1

Macroexpand the expression at point once. If invoked with a pre�x argument,
use macroexpand instead of macroexpand-1.

C-c M-m slime-macroexpand-all
Fully macroexpand the expression at point.

C-c C-t slime-toggle-trace-fdefinition
Toggle tracing of the function at point. If invoked with a pre�x argument, read
additional information, like which particular method should be traced.

3.2.5.3 Accessing Documentation

SPC slime-space
The space key inserts a space and also looks up and displays the argument list
for the function at point, if there is one.

3.2.5.4 Disassembly

C-c M-d slime-disassemble-symbol
Disassemble the function de�nition of the symbol at point.

3.2.6 Abort/Recovery

C-c C-b slime-interrupt
Interrupt Lisp (send SIGINT).

C-c ~ slime-sync-package-and-default-directory
Synchronize the current package and working directory from Emacs to Lisp.

C-c M-p slime-repl-set-package
Set the current package of the REPL.

3.2.7 Cross-reference

SLIME's cross-reference commands are based on the support provided by the Lisp system,
which varies widely between Lisps. For systems with no builtin XREF support SLIME queries

Chapter 3: slime-mode 9

a portable XREF package, which is taken from the CMU AI Repository and bundled with
SLIME.

Each command operates on the symbol at point, or prompts if there is none. With a
pre�x argument they always prompt. You can either enter the key bindings as shown here
or with the control modi�ed on the last key, See Section 3.1.2 [Key bindings], page 4.
C-c C-w c slime-who-calls

Show function callers.
C-c C-w r slime-who-references

Show references to global variable.
C-c C-w b slime-who-binds

Show bindings of a global variable.
C-c C-w s slime-who-sets

Show assignments to a global variable.
C-c C-w m slime-who-macroexpands

Show expansions of a macro.
M-x slime-who-specializes

Show all known methods specialized on a class.
There are also \List callers/callees" commands. These operate by rummaging through

function objects on the heap at a low-level to discover the call graph. They are only available
with some Lisp systems, and are most useful as a fallback when precise XREF information
is unavailable.
C-c < slime-list-callers

List callers of a function.
C-c > slime-list-callees

List callees of a function.

3.2.8 Inspector

The SLIME inspector is a very fancy Emacs-based alternative to the standard INSPECT
function. The inspector presents objects in Emacs bu�ers using a combination of plain
text, hyperlinks to related objects, and \actions" that can be selected to invoke Lisp code
on the inspected object. For example, to present a generic function the inspector shows the
documentation in plain text and presents each method with both a hyperlink to inspect the
method object and a \remove method" action that you can invoke interactively.

The inspector can easily be specialized for the objects in your own programs. For details
see the the inspect-for-emacs generic function in `swank-backend.lisp'.
C-c I slime-inspect

Inspect the value of an expression entered in the minibu�er.
The standard commands available in the inspector are:

RET slime-inspector-operate-on-point
If point is on a value then recursivly call the inspcetor on that value. If point
is on an action then call that action.

Chapter 3: slime-mode 10

d slime-inspector-describe
Describe the slot at point.

l slime-inspector-pop
Go back to the previous object (return from RET).

n slime-inspector-next
The inverse of l. Also bound to SPC.

q slime-inspector-quit
Dismiss the inspector bu�er.

M-RET slime-inspector-copy-down
Evaluate the value under point via the REPL (to set `*').

3.2.9 Pro�ling

M-x slime-toggle-profile-fdefinition
Toggle pro�ling of a function.

M-x slime-profile-package
Pro�le all functions in a package.

M-x slime-unprofile-all
Unpro�le all functions.

M-x slime-profile-report
Report pro�ler data.

M-x slime-profile-reset
Reset pro�ler data.

3.3 Semantic indentation

SLIME automatically discovers how to indent the macros in your Lisp system. To do this the
Lisp side scans all the macros in the system and reports to Emacs all the ones with &body
arguments. Emacs then indents these specially, putting the �rst arguments four spaces in
and the \body" arguments just two spaces, as usual.

This should \just work." If you are a lucky sort of person you needn't read the rest of
this section.

To simplify the implementation, SLIME doesn't distinguish between macros with the
same symbol-name but di�erent packages. This makes it �t nicely with Emacs's indentation
code. However, if you do have several macros with the same symbol-name then they will
all be indented the same way, arbitrarily using the style from one of their arglists. You can
�nd out which symbols are involved in collisions with:

(swank:print-indentation-lossage)
If a collision causes you irritation, don't have a nervous breakdown, just override the Elisp

symbol's common-lisp-indent-function property to your taste. SLIME won't override
your custom settings, it just tries to give you good defaults.

A more subtle issue is that imperfect caching is used for the sake of performance.1 In
an ideal world, Lisp would automatically scan every symbol for indentation changes after
1 Of course we made sure it was actually too slow before making the ugly optimization.

Chapter 3: slime-mode 11

each command from Emacs. However, this is too expensive to do every time. Instead Lisp
usually just scans the symbols whose home package matches the one used by the Emacs
bu�er where the request comes from. That is su�cient to pick up the indentation of most
interactively-de�ned macros. To catch the rest we make a full scan of every symbol each
time a new Lisp package is created between commands { that takes care of things like new
systems being loaded.

You can use M-x slime-update-indentation to force all symbols to be scanned for
indentation information.

3.4 Reader conditional fonti�cation

SLIME automatically evaluates reader-conditional expressions in source bu�ers and \grays
out" code that will be skipped for the current Lisp connection.

Chapter 4: REPL: the \top level" 12

4 REPL: the \top level"

SLIME uses a custom Read-Eval-Print Loop (REPL, also known as a \top level"). The
REPL user-interface is written in Emacs Lisp, which gives more Emacs-integration than the
traditional comint-based Lisp interaction:
� Conditions signalled in REPL expressions are debugged with SLDB.
� Return values are distinguished from printed output by separate Emacs faces (colours).
� Emacs manages the REPL prompt with markers. This ensures that Lisp output is

inserted in the right place, and doesn't get mixed up with user input.

4.1 REPL commands

RET slime-repl-return
Evaluate the current input in Lisp if it is complete. If incomplete, open a
new line and indent. If a pre�x argument is given then the input is evaluated
without checking for completeness.

C-RET slime-repl-closing-return
Close any unmatched parenthesis and then evaluate the current input in Lisp.
Also bound to M-RET.

C-j slime-repl-newline-and-indent
Open and indent a new line.

C-c C-c slime-interrupt
Interrupt the Lisp process with SIGINT.

TAB slime-complete-symbol
Complete the symbol at point.

C-c C-o slime-repl-clear-output
Remove the output and result of the previous expression from the bu�er.

C-c C-t slime-repl-clear-buffer
Clear the entire bu�er, leaving only a prompt.

4.2 Input navigation

C-a slime-repl-bol
Go to the beginning of the line, but stop at the REPL prompt.

M-n
M-p
M-s
M-r slime-repl-{next,previous}-input

slime-repl-{next,previous}-matching-input
comint-style input history commands.

C-c C-n
C-c C-p slime-repl-next-prompt, slime-repl-previous-prompt

Move between the current and previous prompts in the REPL bu�er.

Chapter 4: REPL: the \top level" 13

C-M-a
C-M-e slime-repl-beginning-of-defun, slime-repl-end-of-defun These

commands are like beginning-of-defun and end-of-defun, but when used
inside the REPL input area they instead go directly to the beginning or the
end, respectively.

4.3 Shortcuts

\Shortcuts" are a special set of REPL commands that are invoked by name. To invoke a
shortcut you �rst press , (comma) at the REPL prompt and then enter the shortcut's name
when prompted.

Shortcuts deal with things like switching between directories and compiling and loading
Lisp systems. The exact set of shortcuts is not currently documented in this manual, but
you can use the help shortcut to list them interactively.

Chapter 5: SLDB: the SLIME debugger 14

5 SLDB: the SLIME debugger

SLIME has a custom Emacs-based debugger called SLDB. Conditions signalled in the Lisp
system invoke SLDB in Emacs by way of the Lisp *DEBUGGER-HOOK*.

SLDB pops up a bu�er when a condition is signalled. The bu�er displays a description
of the condition, a list of restarts, and a backtrace. Commands are o�ered for invoking
restarts, examining the backtrace, and poking around in stack frames.

5.1 Examining frames

Commands for examining the stack frame at point.

t sldb-toggle-details
Toggle display of local variables and CATCH tags.

v sldb-show-source
View the frame's current source expression. The expression is presented in the
Lisp source �le's bu�er.

e sldb-eval-in-frame
Evaluate an expression in the frame. The expression can refer to the available
local variables in the frame.

d sldb-pprint-eval-in-frame
Evaluate an expression in the frame and pretty-print the result in a temporary
bu�er.

D sldb-disassemble
Disassemble the frame's function. Includes information such as the instruction
pointer within the frame.

i sldb-inspect-in-frame
Inspect the result of evaluating an expression in the frame.

5.2 Invoking restarts
a sldb-abort

Invoke the ABORT restart.

q sldb-quit
\Quit" { THROW to a tag that the top-level SLIME request-loop catches.

c sldb-continue
Invoke the CONTINUE restart.

0 ... 9 Invoke a restart by number.

Restarts can also be invoked by pressing RET or Mouse-2 on them in the bu�er.

Chapter 5: SLDB: the SLIME debugger 15

5.3 Navigating between frames

n

p sldb-down, sldb-up
Move between frames.

M-n

M-p sldb-details-{down,up}
Move between frames \with sugar": hide the details of the original frame and
display the details and source code of the next. Sugared motion makes you see
the details and source code for the current frame only.

5.4 Miscellaneous Commands

r sldb-restart-frame
Restart execution of the frame with the same arguments it was originally called
with. (This command is not available in all implementations.)

R sldb-return-from-frame
Return from the frame with a value entered in the minibu�er. (This command
is not available in all implementations.)

s sldb-step
Step to the next expression in the frame. (This command is not available in
all implementations.)

B sldb-break-with-default-debugger
Exit SLDB and debug the condition using the Lisp system's default debugger.

: slime-interactive-eval
Evaluate an expression entered in the minibu�er.

Chapter 6: Extras 16

6 Extras

6.1 slime-selector

The slime-selector command is for quickly switching to important bu�ers: the REPL,
SLDB, the Lisp source you were just hacking, etc. Once invoked the command prompts for
a single letter to specify which bu�er it should display. Here are some of the options:

? A help bu�er listing all slime-selectors's available bu�ers.

r The REPL bu�er for the current SLIME connection.

d The most recently activated SLDB bu�er for the current connection.

l The most recently visited lisp-mode source bu�er.

s The *slime-scratch* bu�er. See [slime-scratch], page 6.

slime-selector doesn't have a key binding by default but we suggest that you assign
it a global one. You can bind C-c s like this:

(global-set-key "\C-cs" 'slime-selector)
And then you can switch to the REPL from anywhere with C-c s r.
The macro def-slime-selector-method can be used to de�ne new bu�ers for slime-

selector to �nd.

6.2 slime-autodoc-mode

slime-autodoc-mode is an additional minor-mode for automatically showing information
about symbols near the point. For function names the argument list is displayed and for
global variables we show the value. This is a clone of eldoc-mode for Emacs Lisp.

The mode can be enabled in the slime-setup call of your ~/.emacs:
(slime-setup :autodoc t)

6.3 slime-macroexpansion-minor-mode

Within a slime macroexpansion bu�er some extra commands are provided (these commands
are always available but are only bound to keys in a macroexpansion bu�er).

C-c C-m slime-macroexpand-1-inplace
Just like slime-macroexpand-1 but the original form is replaced with the ex-
pansion.

g slime-macroexpand-1-inplace
The last macroexpansion is performed again, the current contents of the
macroexpansion bu�er are replaced with the new expansion.

q slime-temp-buffer-quit
Close the expansion bu�er.

Chapter 6: Extras 17

6.4 Multiple connections

SLIME is able to connect to multiple Lisp processes at the same time. The M-x slime com-
mand, when invoked with a pre�x argument, will o�er to create an additional Lisp process
if one is already running. This is often convenient, but it requires some understanding to
make sure that your SLIME commands execute in the Lisp that you expect them to.

Some bu�ers are tied to speci�c Lisp processes. Each Lisp connection has its own REPL
bu�er, and all expressions entered or SLIME commands invoked in that bu�er are sent
to the associated connection. Other bu�ers created by SLIME are similarly tied to the
connections they originate from, including SLDB bu�ers, apropos result listings, and so on.
These bu�ers are the result of some interaction with a Lisp process, so commands in them
always go back to that same process.

Commands executed in other places, such as slime-mode source bu�ers, always use the
\default" connection. Usually this is the most recently established connection, but this can
be reassigned via the \connection list" bu�er:
C-c C-x c slime-list-connections

Pop up a bu�er listing the established connections.
The bu�er displayed by slime-list-connections gives a one-line summary of each

connection. The summary shows the connection's serial number, the name of the Lisp
implementation, and other details of the Lisp process. The current \default" connection is
indicated with an asterisk.

The commands available in the connection-list bu�er are:
RET slime-goto-connection

Pop to the REPL bu�er of the connection at point.
d slime-connection-list-make-default

Make the connection at point the \default" connection. It will then be used
for commands in slime-mode source bu�ers.

g slime-update-connection-list
Update the connection list in the bu�er.

q slime-temp-buffer-quit
Quit the connection list (kill bu�er, restore window con�guration).

6.5 Typeout frames

A \typeout frame" is a special Emacs frame which is used instead of the echo area (minibuf-
fer) to display messages from SLIME commands. This is an optional feature. The advantage
of a typeout frame over the echo area is that it can hold more text, it can be scrolled, and
its contents don't disappear when you press a key. All potentially long messages are sent
to the typeout frame, such as argument lists, macro expansions, and so on.
M-x slime-ensure-typeout-frame

Ensure that a typeout frame exists, creating one if necessary.
If the typeout frame is closed then the echo area will be used again as usual.
To have a typeout frame created automatically at startup you can use the slime-

connected-hook:

Chapter 6: Extras 18

(add-hook 'slime-connected-hook 'slime-ensure-typeout-frame)

Chapter 7: Customization 19

7 Customization

7.1 Emacs-side

The Emacs part of SLIME can be con�gured with the Emacs customize system, just use
M-x customize-group slime RET. Because the customize system is self-describing, we only
cover a few important or obscure con�guration options here in the manual.
slime-truncate-lines

The value to use for truncate-lines in line-by-line summary bu�ers popped
up by SLIME. This is t by default, which ensures that lines do not wrap in
backtraces, apropos listings, and so on. It can however cause information to
spill o� the screen.

slime-multiprocessing
This should be set to t if you want to use multiprocessing (threads) in your
Lisp system. It causes any necessary initialization to be performed during Lisp
server startup.

slime-complete-symbol-function
The function to use for completion of Lisp symbols. Three completion styles
are available. The default slime-complete-symbol* performs completion \in
parallel" over the hyphen-delimited sub-words of a symbol name.1 Formally
this means that \a-b-c" can complete to any symbol matching the regular
expression \^a.*-b.*-c.*" (where \dot" matches anything but a hyphen).
Examples give a more intuitive feeling:
� m-v-b completes to multiple-value-bind.
� w-open is ambiguous: it completes to either with-open-file or with-

open-stream. The symbol is expanded to the longest common completion
(with-open-) and the point is placed at the �rst point of ambiguity, which
in this case is the end.

� w--stream completes to with-open-stream.
An alternative is slime-simple-complete-symbol, which completes in the
usual Emacs way. Finally, there is slime-fuzzy-complete-symbol, which is
quite di�erent from both of the above and tries to �nd best matches to an
abbreviated symbol. It also has its own keybinding, defaulting to C-c M-i. See
[slime-fuzzy-complete-symbol], page 7, for more information.

slime-filename-translations
This variable controls �lename translation between Emacs and the Lisp system.
It is useful if you run Emacs and Lisp on separate machines which don't share
a common �le system or if they share the �lessytem but have di�erent layouts,
os is the case with SMB-based �le sharing.

slime-net-coding-system
If you want to transmit Unicode characters between Emacs and the Lisp system,
you should customize this variable. E.g., if you use SBCL, you can set:

1 This style of completion is modelled on `completer.el' by Chris McConnell. That package is bundled
with ILISP.

Chapter 7: Customization 20

(setq slime-net-coding-system 'utf-8-unix)
To actually display Unicode characters you also need appropriate fonts, other-
wise the characters will be rendered as hollow boxes. If you are using Allegro
CL and GNU Emacs, you can also use emacs-mule-unix as coding system.
GNU Emacs has often nicer fonts for the latter encoding.

7.1.1 Hooks
slime-mode-hook

This hook is run each time a bu�er enters slime-mode. It is most useful for set-
ting bu�er-local con�guration in your Lisp source bu�ers. An example use is to
enable slime-autodoc-mode (See Section 6.2 [slime-autodoc-mode], page 16.)

slime-connected-hook
This hook is run when SLIME establishes a connection to a Lisp server. An
example use is to create a Typeout frame (See Section 6.5 [Typeout frames],
page 17.)

sldb-hook
This hook is run after SLDB is invoked. The hook functions are called from
the SLDB bu�er after it is initialized. An example use is to add sldb-print-
condition to this hook, which makes all conditions debugged with SLDB be
recorded in the REPL bu�er.

7.2 Lisp-side (Swank)

The Lisp server side of SLIME (known as \Swank") o�ers several variables to con�gure. The
initialization �le `~/.swank.lisp' is automatically evaluated at startup and can be used to
set these variables.

7.2.1 Communication style

The most important con�gurable is SWANK:*COMMUNICATION-STYLE*, which speci�es the
mechanism by which Lisp reads and processes protocol messages from Emacs. The choice
of communication style has a global in
uence on SLIME's operation.

The available communication styles are:

NIL This style simply loops reading input from the communication socket and serves
SLIME protocol events as they arise. The simplicity means that the Lisp cannot
do any other processing while under SLIME's control.

:FD-HANDLER
This style uses the classical Unix-style \select()-loop." Swank registers the
communication socket with an event-dispatching framework (such as SERVE-
EVENT in CMUCL and SBCL) and receives a callback when data is available.
In this style requests from Emacs are only detected and processed when Lisp
enters the event-loop. This style is simple and predictable.

:SIGIO This style uses signal-driven I/O with a SIGIO signal handler. Lisp receives
requests from Emacs along with a signal, causing it to interrupt whatever it
is doing to serve the request. This style has the advantage of responsiveness,

Chapter 7: Customization 21

since Emacs can perform operations in Lisp even while it is busy doing other
things. It also allows Emacs to issue requests concurrently, e.g. to send one
long-running request (like compilation) and then interrupt that with several
short requests before it completes. The disadvantages are that it may con
ict
with other uses of SIGIO by Lisp code, and it may cause untold havoc by
interrupting Lisp at an awkward moment.

:SPAWN This style uses multiprocessing support in the Lisp system to execute each
request in a separate thread. This style has similar properties to :SIGIO, but
it does not use signals and all requests issued by Emacs can be executed in
parallel.

The default request handling style is chosen according to the capabilities your
Lisp system. The general order of preference is :SPAWN, then :SIGIO, then :FD-
HANDLER, with NIL as a last resort. You can check the default style by calling
SWANK-BACKEND:PREFERRED-COMMUNICATION-STYLE. You can also override the default by
setting SWANK:*COMMUNICATION-STYLE* in your Swank init �le.

7.2.2 Other con�gurables

These Lisp variables can be con�gured via your `~/.swank.lisp' �le:
SWANK:*CONFIGURE-EMACS-INDENTATION*

This variable controls whether indentation styles for &body-arguments in macros
are discovered and sent to Emacs. It is enabled by default.

SWANK:*GLOBALLY-REDIRECT-IO*
When true this causes the standard streams (*standard-output*, etc) to be
globally redirected to the REPL in Emacs. When NIL (the default) these streams
are only temporarily redirected to Emacs using dynamic bindings while han-
dling requests. Note that *standard-input* is currently never globally redi-
rected into Emacs, because it can interact badly with the Lisp's native REPL
by having it try to read from the Emacs one.

SWANK:*GLOBAL-DEBUGGER*
When true (the default) this causes *DEBUGGER-HOOK* to be globally set to
SWANK:SWANK-DEBUGGER-HOOK and thus for SLIME to handle all debugging in
the Lisp image. This is for debugging multithreaded and callback-driven appli-
cations.

SWANK:*SLDB-PRINTER-BINDINGS*
SWANK:*MACROEXPAND-PRINTER-BINDINGS*
SWANK:*SWANK-PPRINT-BINDINGS*

These variables can be used to customize the printer in various situations. The
values of the variables are association lists of printer variable names with the
corresponding value. E.g., to enable the pretty printer for formatting backtraces
in SLDB, you can use:

(push '(*print-pretty* . t) swank:*sldb-printer-bindings*).
SWANK:*USE-DEDICATED-OUTPUT-STREAM*

This variable controls an optimization for sending printed output from Lisp to
Emacs. When t a separate socket is established solely for Lisp to send printed

Chapter 7: Customization 22

output to Emacs through. Without the optimization it is necessary to send
output in protocol-messages to Emacs which must then be decoded, and this
doesn't always keep up if Lisp starts \spewing" copious output.

SWANK:*DEDICATED-OUTPUT-STREAM-PORT*
When *USE-DEDICATED-OUTPUT-STREAM* is t the stream will be opened on
this port. The default value, 0, means that the stream will be opened on some
random port.

SWANK:*LOG-EVENTS*
Setting this variable to t causes all protocol messages exchanged with Emacs
to be printed to *TERMINAL-IO*. This is useful for low-level debugging and for
observing how SLIME works \on the wire." The output of *TERMINAL-IO* can
be found in your Lisp system's own listener, usually in the bu�er *inferior-
lisp*.

Chapter 8: Credits 23

8 Credits

The soppy ending...

Hackers of the good hack

SLIME is an Extension of SLIM by Eric Marsden. At the time of writing, the authors and
code-contributors of SLIME are:

Helmut Eller Luke Gorrie Matthias Koeppe
Marco Baringer Alan Ruttenberg Edi Weitz
Peter Seibel Christophe Rhodes Daniel Barlow
Wolfgang Jenkner Martin Simmons Douglas Crosher
Lawrence Mitchell Brian Downing Andras Simon
Juho Snellman Espen Wiborg Bill Clementson
Thomas Schilling Thomas F. Burdick Nikodemus Siivola
Michael Weber Matthew Danish James Bielman
G�abor Melis Antonio Menezes Leitao Zach Beane
Lars Magne Ingebrigtsen John Paul Wallington Joerg Hoehle
Bryan O'Connor Alan Shutko Utz-Uwe Haus
Tobias Rittweiler Tiago Maduro-Dias Stefan Kamphausen
Robert Lehr Robert E. Brown Raymond Toy
Nathan Bird Jouni K Seppanen Ian Eslick
Harald Hanche-Olsen Eric Blood Eduardo Mu~noz
Chris Capel Bj�rn Nordb� Andreas Fuchs
Alexey Dejneka Yaroslav Kavenchuk Wolfgang Mederle
Wojciech Kaczmarek William Bland Travis Cross
Tom Pierce Tobias C. Rittweiler Tim Daly Jr.
Taylor R. Campbell Taylor Campbell Svein Ove Aas
Sean O'Rourke Russell McManus Rui Patroc��nio
Robert Macomber Reini Urban Pawel Ostrowski
NIIMI Satoshi M�esz�aros Levente Mikel Bancroft
Matthew D. Swank Mark Wooding Marco Monteiro
Lynn Quam Lu��s Oliveira Lasse Rasinen
Julian Stecklina Juergen Gmeiner Jan Rychter
James McIlree Ivan Boldyrev Ignas Mikalajunas
Hannu Koivisto Gerd Flaig Gary King
Frederic Brunel Dan Pierson Christian Lynbech
Brian Mastenbrook Barry Fishman Aleksandar Bakic
Alan Caulkins

... not counting the bundled code from `hyperspec.el', CLOCC, and the CMU AI
Repository.

Many people on the slime-devel mailing list have made non-code contributions to
SLIME. Life is hard though: you gotta send code to get your name in the manual. :-)

Chapter 8: Credits 24

Thanks!

We're indebted to the good people of common-lisp.net for their hosting and help, and for
rescuing us from \Sourceforge hell."

Implementors of the Lisps that we support have been a great help. We'd like to thank
the CMUCL maintainers for their helpful answers, Craig Norvell and Kevin Layer at Franz
providing Allegro CL licenses for SLIME development, and Peter Graves for his help to get
SLIME running with ABCL.

Most of all we're happy to be working with the Lisp implementors who've joined in
the SLIME development: Dan Barlow and Christophe Rhodes of SBCL, Gary Byers of
OpenMCL, and Martin Simmons of LispWorks. Thanks also to Alain Picard and Memetrics
for funding Martin's initial work on the LispWorks backend!

	Introduction
	Getting started
	Supported Platforms
	Downloading SLIME
	Downloading from CVS
	CVS incantations

	Installation
	Running SLIME

	slime-mode
	User-interface conventions
	Temporary buffers
	Key bindings
	inferior-lisp buffer
	Multithreading

	Commands
	Compilation commands
	Finding definitions (``Meta-Point'').
	Lisp Evaluation
	Documentation
	Programming Helpers
	Completion
	Macro Expansion
	Accessing Documentation
	Disassembly

	Abort/Recovery
	Cross-reference
	Inspector
	Profiling

	Semantic indentation
	Reader conditional fontification

	REPL: the ``top level''
	REPL commands
	Input navigation
	Shortcuts

	SLDB: the SLIME debugger
	Examining frames
	Invoking restarts
	Navigating between frames
	Miscellaneous Commands

	Extras
	slime-selector
	slime-autodoc-mode
	slime-macroexpansion-minor-mode
	Multiple connections
	Typeout frames

	Customization
	Emacs-side
	Hooks

	Lisp-side (Swank)
	Communication style
	Other configurables

	Credits
	Hackers of the good hack
	Thanks!

